Skip to main content
Log in

Self-gravitating stellar systems and non-extensive thermostatistics

  • Original article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract.

After introducing the fundamental properties of self-gravitating systems, we present an application of Tsallis’ generalized entropy to the analysis of their thermodynamic nature. By extremizing the Tsallis entropy, we obtain an equation of state known as the stellar polytrope. For a self-gravitating stellar system confined within a perfectly reflecting wall, we discuss the thermodynamic instability caused by its negative specific heat. The role of the extremum as a quasi-equilibrium is also demonstrated from the results of N-body simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binney, J., Tremaine, S.: Galactic Dynamics, Princeton University Press Princeton (1987)

  2. Spitzer, L.: Dynamical Evolution of Globular Clusters, Princeton University Press Princeton (1987)

  3. Elson, R., Hut, P., Inagaki, S.: Dynamical evolution of globular clusters. Annu. Rev. Astron. Astrophys. 25, 565-601 (1987)

    Article  Google Scholar 

  4. Meylan, G., Heggie, D.C.: Internal dynamics of globular clusters. Astron. Astrophys. Rev. 8 1-143 (1997)

    Google Scholar 

  5. Antonov, V.A.: Most probable phase distribution in spherical star systems and condition for its existence. Vest. Leningrad Gros. Univ. 7, 135 (1962) (English transl. in: Goodman, J., Hut, P. (eds) IAU Symposium 113, Dynamics of Globular Clusters, pp. 525-540, Reidel Dordrecht (1985))

    Google Scholar 

  6. Lynden-Bell, D., Wood, R.: The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 138, 495-525 (1968)

    Google Scholar 

  7. Padmanabhan, T.: Statistical mechanics of gravitating systems. Phys. Rep. 188, 285-362 (1990)

    MathSciNet  Google Scholar 

  8. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479-487 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Abe, S., Okamoto, Y. (eds): Nonextensive Statistical Mechanics and its Applications, Springer Berlin Heidelberg New York (2001)

  10. Kaniadakis, G., Lissia, M., Rapisarda, A. (eds): Non-extensive thermodynamics and physical applications (special issue). Physica A 305 (2002)

  11. Plastino, A.R., Plastino, A.: Stellar polytropes and Tsallis’ entropy. Phys. Lett. A 174, 384-386 (1993)

    MathSciNet  Google Scholar 

  12. Aly, J.-J.: Minimum energy/maximum entropy states of a self-gravitating system. In: Combes, F., Athanassoula, E. (eds) N-body Problems and Gravitational Dynamics, pp. 19-23, Proceedings of a meeting held at Aussois-France (21-25 March 1993), Publications de l’observatiore de Paris Paris (1993)

  13. Lima, J.A.S., Silva, R., Santos, J.: Jeans’ gravitational instability and nonextensive kinetic theory. Astron. Astrophys. 396, 309-313 (2002)

    MATH  Google Scholar 

  14. Taruya, A., Sakagami, M.: Gravothermal catastrophe and generalized entropy of self-gravitating systems. Physica A 307, 185-206 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Taruya, A., Sakagami, M.: Gravothermal catastrophe and Tsallis’ generalized entropy of self-gravitating systems II. Thermodynamic properties of stellar polytrope. Physica A 318, 387-413 (2003)

    MATH  Google Scholar 

  16. Taruya, A., Sakagami, M.: Gravothermal catastrophe and Tsallis’ generalized entropy of self-gravitating systems III. Equilibrium structure using normalized q-values. Physica A 322, 285-312 (2003)

    MATH  Google Scholar 

  17. Taruya, A., Sakagami, M.: Long-term evolution of stellar self-gravitating system away from thermal equilibrium : connection with non-extensive statistics. Phys. Rev. Lett. 90, 181101 (2003)

    Article  Google Scholar 

  18. Chandrasekhar, S.: Principles of Stellar Dynamics, University of Chicago Press, Chicago (1942)

  19. Padmanabhan, T.: Antonov instability and gravothermal catastrophe - revisited. Astrophys. J. Suppl. 71, 651-654 (1989)

    Article  Google Scholar 

  20. Katz, J.: On the number of unstable modes of an equilibrium. Mon. Not. R. Astron. Soc. 183, 765-769 (1978)

    MATH  Google Scholar 

  21. Katz, J.: On the number of unstable modes of an equilibrium - II. Mon. Not. R. Astron. Soc. 189, 817-822 (1979)

    Google Scholar 

  22. Inagaki, S.: The gravothermal catastrophe of stellar systems. Publ. Astron. Soc. Jpn 32, 213-227 (1980)

    Google Scholar 

  23. Hachisu, I., Sugimoto, D.: Gravothermal catastrophe and negative specific heat of self-gravitating systems. Prog. Theor. Phys. 60, 123-135 (1978)

    Google Scholar 

  24. Makino, J., Hut, P.: On core collapse. Astrophys. J. 383, 181-191 (1991)

    Article  Google Scholar 

  25. Chavanis, P.H.: Gravitational instability of polytropic spheres and generalized thermodynamics. Astron. Astrophys. 386, 732-742 (2002)

    Article  Google Scholar 

  26. Chavanis, P.H.: Gravitational instability of isothermal and polytropic spheres. Astron. Astrophys. 401, 15-42 (2003)

    MATH  Google Scholar 

  27. Chavanis, P.H., Sire, C.: Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions. Phys. Rev. E (to appear)

  28. Tsallis, C., Mendes, R.S., Plastino, A.R.: The role of constraints within generalized nonextensive statistics. Physica A 261, 534-554 (1998)

    Article  Google Scholar 

  29. Mart\’inez, S., Nicolás, F., Pennini, F., Plastino, A.: Tsallis’ entropy maximization procedure revisited. Physica A 286, 489-502 (2000)

    MathSciNet  Google Scholar 

  30. Abe, S., Rajagopal, A.K.: Nonuniqueness of canonical ensemble theory arising from microcanonical basis. Phys. Lett. A 272, 341-345 (2000)

    MathSciNet  Google Scholar 

  31. Abe, S., Rajagopal, A.K.: Microcanonical foundation for systems with power-law distributions. J. Phys. A 33, 8733-8738 (2000)

    MATH  Google Scholar 

  32. Abe, S., Rajagopal, A.K.: Justification of power law canonical distributions based on the generalized central-limit theorem. Europhys. Lett. 52, 610-614 (2000)

    Article  Google Scholar 

  33. Chandrasekhar, S.: Introduction to the Study of Stellar Structure, Dover New York (1939)

  34. Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution, Springer Berlin Heidelberg New York (1990)

  35. Lynden-Bell, D.: Negative specific heat in astronomy, physics and chemistry. Physica A 263, 293-304 (1999)

    Article  Google Scholar 

  36. Abe, S., Mart\’inez, S., Pennini, F., Plastino A.: Nonextensive thermodynamic relations. Phys. Lett. A 281, 126-130 (2001)

    MATH  Google Scholar 

  37. Abe, S.: Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Re’nyi-entropy-based theory. Physica A 300, 417-423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mart\’inez, S., Pennini, F., Plastino, A.: Thermodynamics’ zeroth law in a nonextensive scenario. Physica A 295, 416-424 (2001)

    Google Scholar 

  39. Endoh, H., Fukushige, T., Makino, J.: Gravothermal expansion in N-body systems. Publ. Astron. Soc. Jpn 49, 345-352 (1997)

    Google Scholar 

  40. Hernquist, L.: An analytical model for spherical galaxies and bulges. Astrophys. J. 356, 359-364 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sakagami.

Additional information

Communicated by M. Sugiyama

Received: 10 July 2003, Accepted: 27 October 2003, Published online: 3 February 2004

PACS:

98.10. + z, 05.70.Ln, 05.20.-y

Correspondence to: M. Sakagami

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakagami, M., Taruya, A. Self-gravitating stellar systems and non-extensive thermostatistics. Continuum Mech. Thermodyn. 16, 279–292 (2004). https://doi.org/10.1007/s00161-003-0168-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-003-0168-7

Keywords:

Navigation