Skip to main content
Log in

Fractal approach to the description of the auroral region

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The plasma of the auroral region, where energetic particles precipitate from the magnetosphere into the ionosphere, is highly inhomogeneous and nonstationary. In this case, traditional methods of classical plasma physics turn out to be inapplicable. In order to correctly describe the dynamic regimes, transition processes, fluctuations, and self-similar scalings in this region, nonlinear dynamics methods based of the concepts of fractal geometry and percolation theory can be used. In this work, the fractal geometry and percolation theory are used to describe the spatial structure of the ionospheric conductivity. The topological properties, fractal dimensions, and connective indices characterizing the structure of the Pedersen and Hall conductivities on the nightside auroral zone are investigated theoretically. The restrictions imposed on the fractal estimates by the condition of ionospheric current percolation are analyzed. It is shown that the fluctuation scalings of the electric fields and auroral glow observed in the auroral zone fit well the restrictions imposed by the critical condition on the percolation of the Pedersen current. Thus, it is demonstrated that the fractal approach is a promising and convenient method for studying the properties of the ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Paschmann, S. Haaland, and R. Treumann, Space Sci. Rev. 103 (2002).

  2. Y. Galperin, J. Atmos. Solar-Terr. Phys. 64, 211 (2001).

    Article  ADS  Google Scholar 

  3. E. E. Antonova, M. V. Stepanova, M. V. Teltzov, and B. Tverskoy, J. Geophys. Res. 103, 9317 (1998).

    Article  ADS  Google Scholar 

  4. M. Stepanova, O. Luízar, and E. Antonova, Adv. Space Res. 30, 2719 (2002).

    Article  ADS  Google Scholar 

  5. R. L. Lysak, Space Sci. Rev. 52, 33 (1990).

    Article  ADS  Google Scholar 

  6. J. J. Sojka, R. Schunk, M. D. Bowline, et al., J. Geophys. Res. 103, 20669 (1998).

    Article  ADS  Google Scholar 

  7. P. A. Sedykh and E. A. Ponomarev, Geomagn. Aeron. 42, 613 (2002).

    Google Scholar 

  8. H. Vanhamäki, Ann. Geophys. 29, 97 (2011).

    Article  ADS  Google Scholar 

  9. M. V. Klimenko, V. V. Klimenko, K. G. Ratovsky, and L. P. Goncharenko, Geomagn. Aeron. 51, 364 (2011).

    Article  ADS  Google Scholar 

  10. S. Hernandez, R. E. Lopez, and M. Wiltberger, Adv. Space Res. 36, 1845 (2005).

    Article  ADS  Google Scholar 

  11. E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, 1982; Mir, Moscow, 1985).

    Book  Google Scholar 

  12. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, Philadelphia, 1994).

    Google Scholar 

  13. J. Feder, Fractals (Plenum Press, New York, 1988; Mir, Moscow, 1991).

    MATH  Google Scholar 

  14. L. M. Zelenyi and A. B. Milovanov, Phys. Usp. 47, 749 (2004).

    Article  Google Scholar 

  15. A. V. Milovanov, L. M. Zelenyi, P. Veltri, et al., J. Atmos. Solar-Terr. Phys. 63, 705 (2011).

    Article  ADS  Google Scholar 

  16. S. Ohtani, T. Higuchi, A. T. V. Lui, and K. Takahashi, J. Geophys. Res. 100, 19135 (1995).

    Article  ADS  Google Scholar 

  17. B. V. Kozelov, Ann. Geophys. 21, 2011 (2003).

    Article  ADS  Google Scholar 

  18. B. V. Kozelov, V. M. Uritsky, and A. J. Klimas, Geophys. Rev. Lett. 31, L20804 (2004).

    Article  ADS  Google Scholar 

  19. E. I. Mogilevskii, Fractals on the Sun (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  20. J. A. Bittencourt, Fundamentals of Plasma Physics (Springer-Verlag, New York, 2004; Fizmatlit, Moscow, 2009).

    Book  MATH  Google Scholar 

  21. V. B. Lyatskii and Yu. P. Mal’tsev, Magnetosphere-Ionosphere Interaction (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  22. R. W. Spiro, P. H. Reiff, and L. J. Maher, J. Geophys. Res. 87, 8215 (1982).

    Article  ADS  Google Scholar 

  23. D. A. Hardy, M. S. Gussenhoven, W. J. Raistrick, and R. McNeil, J. Geophys. Res. 92, 12275 (1987).

    Article  ADS  Google Scholar 

  24. V. G. Vorobjev and O. I. Yagodkina, Geomagn. Aeron. 45, 438 (2005).

    Google Scholar 

  25. V. G. Vorobjev and O. I. Yagodkina, Geomagn. Aeron. 47, 185 (2007).

    Article  ADS  Google Scholar 

  26. Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983).

    Article  ADS  Google Scholar 

  27. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, CA, 1982; Inst. Komp’yuternykh Issled., Moscow, 2002).

    MATH  Google Scholar 

  28. S. Alexander and R. Orbach, J. Phys. Lett. 43, 625 (1982).

    Article  Google Scholar 

  29. S. Havlin and A. Ben-Avraham, Adv. Phys. 36, 695 (1987).

    Article  ADS  Google Scholar 

  30. O. G. Bakunin, Turbulence and Diffusion: Scaling Versus Equations (Springer-Verlag, Berlin, 2008).

    Google Scholar 

  31. O. G. Bakunin, Phys. Usp. 46, 733 (2003).

    Article  ADS  Google Scholar 

  32. M. Wiltberger, R. S. Weigel, W. Lotko, and J. A. Fedder, J. Geophys. Res. 114, A01204 (2009).

    Article  ADS  Google Scholar 

  33. L. R. Lyons, J. Geophys. Res. 86, 1 (1981).

    Article  ADS  Google Scholar 

  34. L. R. Lyons, D. S. Evans, and R. Lundin, J. Geophys. Res. 84, 457 (1979).

    Article  ADS  Google Scholar 

  35. L. R. Lyons, Rev. Geophys. 30, 93 (1992).

    Article  ADS  Google Scholar 

  36. I. V. Golovchanskaya and B. V. Kozelov, J. Geophys. Res. 115, A09321 (2010).

    Article  ADS  Google Scholar 

  37. I. V. Golovchanskaya, B. V. Kozelov, and I. V. Despirak, Geomagn. Aeron. 52, 501 (2012).

    Article  Google Scholar 

  38. P. Abry, P. Flandrin, M. S. Taqqu, and D. Veitch, in Self-Similar Network Traffic and Performance Evaluation, Ed. by K. Park and W. N. Y. Willinger (Wiley, New York, 2000), p. 39.

  39. E. M. Dubinin, A. S. Volokitin, P. L. Israelevich, and N. S. Nikolaeva, Planet. Space Sci. 36, 949 (1988).

    Article  ADS  Google Scholar 

  40. I. V. Golovchanskaya, B. V. Kozelov, O. V. Mingalev, et al., Geophys. Rev. Lett. 38, L17103 (2011).

    Article  ADS  Google Scholar 

  41. I. V. Golovchanskaya, A. A. Ostapenko, and B. V. Kozelov, J. Geophys. Res. 111, A12301 (2006).

    Article  ADS  Google Scholar 

  42. T. Oguti, Metamorphoses of Aurora (National Institute of Polar Research, Tokyo, 1975).

    Google Scholar 

  43. T. S. Trondsen and L. L. Cogger, J. Geophys. Res. 103, 9405 (1998).

    Article  ADS  Google Scholar 

  44. V. M. Uritsky, A. J. Klimas, D. Vassiliadis, et al., J. Geophys. Res. 107, 1426 (2002).

    Article  Google Scholar 

  45. B. V. Kozelov and K. Rypdal, Ann. Geophys. 25, 915 (2007).

    Article  ADS  Google Scholar 

  46. A. Klimas, V. Uritsky, and E. Donovan, J. Geophys. Res. 115, A06202 (2010).

    Article  ADS  Google Scholar 

  47. I. V. Golovchanskaya, B. V. Kozelov, T. I. Sergienko, et al., J. Geophys. Res. 113, A10303 (2008).

    Article  ADS  Google Scholar 

  48. B. V. Kozelov and I. V. C. Golovchanskaya, J. Geophys. Res. 115, A02204 (2010).

    Article  ADS  Google Scholar 

  49. B. V. Kozelov, I. V. Golovchanskaya, and O. V. Mingalev, Ann. Geophys. 29, 1349 (2011).

    Article  ADS  Google Scholar 

  50. V. M. Uritsky, A. J. Klimas, and D. Vassiliadis, Adv. Space Res. 37, 539 (2006).

    Article  ADS  Google Scholar 

  51. S. W. H. Cowley, Magnetospheric Current Systems (AGU, Washington, DC, 2000).

    Google Scholar 

  52. B. Efron, Nontraditional Methods of Multidimensional Statistical Analysis (Finansy i Statistika, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chernyshov.

Additional information

Original Russian Text © A.A. Chernyshov, M.M. Mogilevsky, B.V. Kozelov, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 7, pp. 636–646.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernyshov, A.A., Mogilevsky, M.M. & Kozelov, B.V. Fractal approach to the description of the auroral region. Plasma Phys. Rep. 39, 562–571 (2013). https://doi.org/10.1134/S1063780X13060020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13060020

Keywords

Navigation