Skip to main content
Log in

Specific features of virtual cathode formation and dynamics with allowance for the magnetic self-field of a relativistic electron beam

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The conditions and mechanisms of virtual cathode formation in relativistic and ultrarelativistic electron beams are analyzed with allowance for the magnetic self-field for different magnitudes of the external magnetic field. The typical behavior of the critical current at which an oscillating virtual cathode forms in a relativistic electron beam is investigated as a function of the electron energy and the magnitude of the uniform external magnetic field. It is shown that the conditions for virtual cathode formation in a low external magnetic field are determined by the influence of the magnetic self-field of the relativistic electron beam. In particular, azimuthal instability of the electron beam caused by the action of the beam magnetic self-field, which leads to a reduction in the critical current of the relativistic electron beam, is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. High-Power Microwave Sources (Artech House Microwave Library), Ed. by V. L. Granatstein and I. Alexeff (Artech House, Boston,1987).

    Google Scholar 

  2. A. E. Dubinov and V. D. Selemir, J. Comm. Technol. Electron. 6, 575 (2002).

    Google Scholar 

  3. D. I. Trubetskov and A. E. Khramov, Lectures on Microwave Electronics for Physicists (Fizmatlit, Moscow, 2003, 2004), Vols. 1, 2 [in Russian].

    Google Scholar 

  4. L. S. Bogdankevich and A. A. Rukhadze, Sov. Phys. Usp. 14, 163 (1971).

    Article  ADS  Google Scholar 

  5. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov, Plasma Relativistic Microwave Electronics (Mosk. Gos. Tekhn. Univ. im. N.E. Baumana, Moscow, 2002) [in Russian].

    Google Scholar 

  6. C. K. Birdsall and W. B. Bridges, Electron Dynamics of Diode Regions (Academic, New York, 1966).

    Google Scholar 

  7. R. A. Mahaffey, P. A. Sprangle, J. Golden, and C. A. Kapetanakos, Phys. Rev. Lett. 39, 843 (1977).

    Article  ADS  Google Scholar 

  8. A. N. Didenko, Ya. E. Krasik, S. F. Perelygin, and G. P. Fomenko, Sov. Tech. Phys. Lett. 5, 128 (1979).

    Google Scholar 

  9. V. G. Anfinogentov and A. E. Khramov, Radiophys. Quant. Electron. 41, 764 (1998).

    Article  ADS  Google Scholar 

  10. W. Jiang, K. Masugata, and K. Yatsui, Phys. Plasmas 2, 982 (1995).

    Article  ADS  Google Scholar 

  11. A. A. Koronovskii and A. E. Khramov, Plasma Phys. Rep. 28, 666 (2002).

    Article  ADS  Google Scholar 

  12. D. Biswas, Phys. Plasmas 16, 063104 (2009).

    Article  ADS  Google Scholar 

  13. H. Sze, J. Benford, and T. Young, IEEE Trans. Plasma Sci. 15, 592 (1985).

    Google Scholar 

  14. A. N. Didenko and V. I. Rashchikov, Sov. J. Plasma Phys. 18, 616 (1992).

    Google Scholar 

  15. V. D. Selemir, B. V. Alekhin, V. E. Vatrunin, et al., Plasma Phys. Rep. 20, 621 (1994).

    ADS  Google Scholar 

  16. Yu. A. Kalinin, A. A. Koronovskii, A. E. Khramov, et al., Plasma Phys. Rep. 31, 938 (2005).

    Article  ADS  Google Scholar 

  17. E. N. Egorov, Yu. A. Kalinin, Yu. I. Levin, et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 69, 1724 (2005).

    Google Scholar 

  18. E. N. Egorov and A. E. Hramov, Plasma Phys. Rep. 32, 683 (2006).

    Article  ADS  Google Scholar 

  19. G. Singh and Ch. Shashank, Phys. Plasmas 18, 063104 (2011).

    Article  ADS  Google Scholar 

  20. A. E. Khramov, J. Comm. Technol. Electron. 44, 551 (1999).

    Google Scholar 

  21. E. N. Egorov, Yu. A. Kalinin, A. A. Koronovskii, et al., J. Comm. Technol. Electron. 52, 45 (2007).

    Article  Google Scholar 

  22. A. E. Dubinov and I. A. Efimova, Tech. Phys. 48, 1205 (2003).

    Article  Google Scholar 

  23. R. A. Filatov, A. E. Hramov, Y. P. Bliokh, et al., Phys. Plasmas 16, 033106 (2009).

    Article  ADS  Google Scholar 

  24. A. A. Rukhadze, A. S. Bogdankevich, S. E. Rosinskii, and V. G. Rukhlin, Physics of High-Current Relativistic Electron Beams (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  25. M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in Plasma (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  26. A. V. Fedotov and A. G. Shkvarunets, Sov. J. Plasma Phys. 14, 405 (1988).

    Google Scholar 

  27. V. I. Krementsov, P. S. Strelkov, and A. G. Shkvarunets, Sov. J. Plasma Phys. 2, 519 (1976).

    Google Scholar 

  28. P. A. Lindsay, W. K. Toh, and X. Chen, IEEE Trans. Plasma Sci. 30, 1186 (2002).

    Article  ADS  Google Scholar 

  29. X. Chen, W. K. Toh, and P. A. Lindsay, IEEE Trans. Plasma Sci. 32, 835 (2004).

    Article  Google Scholar 

  30. A. E. Dubinov, I. A. Efimova, I. Yu. Kornilova, et al., Fiz. Element. Chast. At. Yadra 35, 462 (2004).

    Google Scholar 

  31. E. N. Egorov, S. A. Kurkin, and A. E. Khramov, Influence of Two-Dimensional Effects of Charge Particle Dynamics on Oscillations in Electron Flows with a Virtual Cathode. Methods of Nonlinear Dynamics and Chaos Theory in Problems of Microwave Electronics (Fizmatlit, Moscow, 2009), Vol. 2: Nonstationary and Chaotic Processes [in Russian].

    Google Scholar 

  32. A. E. Khramov, S. A. Kurkin, E. N. Egorov, et al., Mat. Model. 23(1), 3 (2011).

    MATH  Google Scholar 

  33. J. Wang, Z. Chen, Y. Wang, et al., Phys. Plasmas 17, 073107 (2010).

    Article  ADS  Google Scholar 

  34. R. A. Filatov and A. E. Hramov, Plasma Phys. Rep. 37, 395 (2011).

    Article  ADS  Google Scholar 

  35. H. Sze, J. Benford, and B. Harteneck, Phys. Fluids 29, 5875 (1986).

    Article  Google Scholar 

  36. A. E. Dubinov and V. D. Selemir, Tech. Phys. Lett. 27, 557 (2001).

    Article  ADS  Google Scholar 

  37. A. E. Hramov, A. A. Koronovskii, and S. A. Kurkin, Phys. Lett. A 374, 3057 (2010).

    Article  ADS  Google Scholar 

  38. S. A. Kurkin, A. A. Koronovskii, and A. E. Hramov, Tech. Phys. Lett. 37, 356 (2011).

    Article  ADS  Google Scholar 

  39. J. Benford, J. A. Swegle, and E. Schamiloglu, High-Power Microwaves (CRC Press, Boca Raton, 2007).

    Google Scholar 

  40. S. A. Kurkin, A. A. Koronovskii, and A. E. Hramov, Tech. Phys. 54, 1520 (2009).

    Article  Google Scholar 

  41. M. Yu. Morozov and A. E. Hramov, Plasma Phys. Rep. 33, 553 (2007).

    Article  ADS  Google Scholar 

  42. A. E. Hramov, A. A. Koronovskii, M. Yu. Morozov, and A. V. Mushtakov, Phys. Lett. A 372, 876 (2008).

    Article  ADS  MATH  Google Scholar 

  43. S. A. Kurkin, A. A. Koronovskii, and A. E. Hramov, Plasma Phys. Rep. 35, 628 (2009).

    Article  ADS  Google Scholar 

  44. V. A. Balakirev, A. M. Gorban’, I. I. Magda, et al., Plasma Phys. Rep 23, 323 (1997).

    ADS  Google Scholar 

  45. A. E. Dubinov, I. Yu. Kornilova, and V. D. Selemir, Phys. Usp. 45, 1109 (2002).

    Article  ADS  Google Scholar 

  46. S. E. Tsimring, Electron Beams and Microwave Vacuum Electronics (Wiley, Hoboken, NJ, 2007).

    Google Scholar 

  47. G. A. Mesyats, Pulsed Energetics and Electronics (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  48. I. L. Bogdankevich, P. S. Strelkov, V. P. Tarakanov, and D. K. Ul’yanov, Plasma Phys. Rep. 30, 376 (2004).

    Article  ADS  Google Scholar 

  49. A. S. Roshal’, Modeling of Charged Beams (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  50. Ch. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).

    Google Scholar 

  51. A. G. Sveshnikov and S. A. Yakunin, Mat. Model. 1(4), 1 (1989).

    MathSciNet  MATH  Google Scholar 

  52. T. M. Anderson, A. A. Mondelli, B. Levush, et al., Proc. IEEE 87, 804 (1999).

    Article  Google Scholar 

  53. A. D. Grigor’ev, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam. 7(4), 48 (1999).

    Google Scholar 

  54. V. G. Anfinogentov and A. E. Khramov, J. Comm. Technol. Electron. 5, 546 (2001).

    Google Scholar 

  55. J. P. Boris and R. Lee, Comm. Math. Phys. 12, 131 (1969).

    Google Scholar 

  56. R. C. Davidson, Theory of Nonneutral Plasmas (Benjamin, New York, 1974).

    Google Scholar 

  57. R. H. Levy, Phys. Fluids 8, 1288 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  58. A. L. Peratt and C. M. Snell, Phys. Rev. Lett. 54, 1167 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kurkin.

Additional information

Original Russian Text © S.A. Kurkin, A.A. Koronovskii, A.E. Hramov, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 4, pp. 333–344.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurkin, S.A., Koronovskii, A.A. & Hramov, A.E. Specific features of virtual cathode formation and dynamics with allowance for the magnetic self-field of a relativistic electron beam. Plasma Phys. Rep. 39, 296–306 (2013). https://doi.org/10.1134/S1063780X13040065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13040065

Keywords

Navigation