Skip to main content
Log in

Physical meaning of one-machine and multimachine tokamak scalings

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Specific features of energy confinement scalings constructed using different experimental databases for tokamak plasmas are considered. In the multimachine database, some pairs of engineering variables are collinear; e.g., the current I and the input power P both increase with increasing minor radius a. As a result, scalings derived from this database are reliable only for discharges in which such ratios as I/a 2 or P/a 2 are close to their values averaged over the database. The collinearity of variables allows one to exclude the normalized Debye radius d* from the scaling expressed in a nondimensional form. In one-machine databases, the dimensionless variables are functionally dependent, which allow one to cast a scaling without d*. In a database combined from two devices, the collinearity may be absent, so the Debye radius cannot generally be excluded from the scaling. It is shown that the experiments performed in support of the absence of d* in the two-machine scaling are unconvincing. Transformation expressions are given that allow one to compare experiments for the determination of scaling in any set of independent variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Kadomtsev, Sov. J. Plasma Phys. 1, 295 (1975).

    Google Scholar 

  2. J. W. Connor and J. B. Taylor, Nucl. Fusion 17, 1047 (1977).

    Article  ADS  Google Scholar 

  3. P. N. Yushmanov, T. Takizuka, K. S. Riedel, et al., Nucl. Fusion 30, 1999 (1990).

    Article  Google Scholar 

  4. O. J. W. F. Kardaun, Classical Methods of Statistics (Springer-Verlag, Berlin, 2005).

    MATH  Google Scholar 

  5. G. Cordey, B. Balet, D. Campbell, et al., Plasma Phys. Controlled Fusion 38, A67 (1996).

    Article  ADS  Google Scholar 

  6. ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, and ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999), Section 6.

    Google Scholar 

  7. E. J. Doyle, W. A. Houlberg, Y. Kamada, et al., Nucl. Fusion 47, S18 (2007), Section 5.3.

    Article  ADS  Google Scholar 

  8. D. A. Gates, J. Ahn, J. Allain, et al., Nucl. Fusion 49, 104016 (2009).

    Article  ADS  Google Scholar 

  9. F. Jenko, in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper TH/P8-12.

  10. C. M. Roach, M. Walters, R. V. Budny, et al., Nucl. Fusion 48, 125001 (2008).

    Article  ADS  Google Scholar 

  11. Yu. N. Dnestrovskij, Plasma Phys. Rep. 25, 97 (1999).

    ADS  Google Scholar 

  12. Yu. N. Dnestrovskij, J. W. Connor, S. V. Cherkasov, et al., Plasma Phys. Controlled Fusion 49, 1477 (2007).

    Article  ADS  Google Scholar 

  13. P. C. De Vries, M.-D. Hua, D. C. McDonald, et al., Nucl. Fusion 48, 065006 (2008).

    Article  ADS  Google Scholar 

  14. J. P. Christiansen, J. G. Cordey, and A. Taroni, Nucl. Fusion 34, 375 (1994).

    Article  ADS  Google Scholar 

  15. C. C. Petty, T. C. Luce, K. H. Burrell, et al., Phys. Plasmas 2, 2342 (1995).

    Article  ADS  Google Scholar 

  16. M. Valovič, R. Akers, M. de Bock, et al., in Proceedings of the 23rd IAEA Fusion Energy Conference, Daejeon, 2010, Paper EXC/P8-18, http://www-pub.iaea.org/MTCD/meetings/PDFplus/2010/cn180/cn180_papers/exc_p8-18.pdf.

  17. J. G. Cordey, Plasma Phys. Controlled Fusion 39, B115 (1997).

    Article  Google Scholar 

  18. J. P. Christiansen and J. G. Cordey, Nucl. Fusion 38, 1757 (1998).

    Google Scholar 

  19. T. Luce, C. C. Petty, B. Balot, and J. G. Cordey, in Proceedings of the 16th IAEA Fusion Energy Conference, Montreal, 1996 (IAEA, Vienna, 1997), Vol. 1, p. 611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Dnestrovskij.

Additional information

Original Russian Text © Yu.N. Dnestrovskij, A.V. Danilov, A.Yu. Dnestrovskij, S.E. Lysenko, J. Ongena, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 4, pp. 299–307.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dnestrovskij, Y.N., Danilov, A.V., Dnestrovskij, A.Y. et al. Physical meaning of one-machine and multimachine tokamak scalings. Plasma Phys. Rep. 39, 263–271 (2013). https://doi.org/10.1134/S1063780X13040016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13040016

Keywords

Navigation