Skip to main content
Log in

Developing a procedure for calculating physical processes in combined schemes of plasma magneto–inertial confinement

  • Proceedings of the LXV International Conference “Nucleus 2015: New Horizons in Nuclear Physics, Nuclear Engineering, Femto- and Nanotechnologies” (LXV International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A combined scheme of hot plasma confinement is proposed, and laser and plasma-based methods for generating a megagauss field during the implosion of a magnetized target are described that allow the development of new high-density plasma sources for materials science experiments and advanced areas of power engineering. A procedure for numerical calculation of the physical processes involved in the target plasma in an external magnetic field is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thio, Y.C.F., J. Phys.: Conf. Ser., 2008, vol. 112, p. 042084.

    ADS  Google Scholar 

  2. Lindemuth, I.R. and Siemon, R.E., Am. J. Phys., 2009, vol. 77, p. 407.

    Article  ADS  Google Scholar 

  3. Knauer, J.P., Gotchev, O.V., Chang, P.Y., et al., Phys. Plasmas, 2010, vol. 17, p. 056318.

    Article  ADS  Google Scholar 

  4. Ryzhkov, S.V., Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, p. 456.

    Article  Google Scholar 

  5. Kostyukov, I.Yu. and Ryzhkov S.V., Plasma Phys. Rep., 2011, vol. 37, p. 1092.

    Article  ADS  Google Scholar 

  6. Kuzenov, V.V. and Ryzhkov, S.V., Probl. At. Sci. Technol., 2013, no. 4, p. 103.

    Google Scholar 

  7. Aleksandrov, V.V., Gasilov, V.A., Grabovski, E.V., et al., Plasma Phys. Rep., 2014, vol. 40, p. 939.

    Article  ADS  Google Scholar 

  8. Orlov, A.P. and Repin, B.G., Math. Models Comput. Simul., 2015, vol. 7, p. 69.

    Article  Google Scholar 

  9. Hansen, S.B., Gomez, M.R., Sefkow, A.B., et al., Phys. Plasmas, 2015, vol. 22, p. 056313.

    Article  ADS  Google Scholar 

  10. Gasilov, V.A., Zakharov, S.V., and Smirnov, V.P., JETP Lett., 1991, vol. 53, p. 85.

    ADS  Google Scholar 

  11. Basko, M.M., Kemp, A.J., and Meyer-ter-Vehn, J., Nucl. Fusion, 2000, vol. 40, p. 59.

    Article  ADS  Google Scholar 

  12. Gasilov, V.A., D’yachenko, S.V., Chuvatin, A.S., et al., Math. Models Comput. Simul., 2010, vol. 2, p. 375.

    Article  Google Scholar 

  13. Voronchev, V.T. and Kukulin V.I., Phys. At. Nucl., 2010, vol. 73, p. 38.

    Article  Google Scholar 

  14. Ryzhkov, S.V., Probl. At. Sci. Technol., 2010, no. 4, p. 105.

    Google Scholar 

  15. Chirkov, A.Yu. and Ryzhkov, S.V., J. Fusion Energy, 2012, vol. 31, no. 1, p. 7.

    Article  ADS  Google Scholar 

  16. Kuzenov, V.V. and Ryzhkov, S.V., Probl. At. Sci. Technol., 2013, no. 1(83), p. 12.

    Google Scholar 

  17. Grabovskii, E.V., Dzhangobegov, V.V., and Oleinik, G.M., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2015, vol. 38, p. 80.

    Google Scholar 

  18. Kuzenov, V.V. and Frolko, P.A., Prikl. Fiz., 2015, no. 2, p. 21.

    Google Scholar 

  19. Chetverushkin, B.N., Matematicheskoe modelirovanie zadach dinamiki izluchayushchego gaza (Mathematical Simulation for Radiating Gas Dynamic Problems), Moscow: Nauka, 1985.

    Google Scholar 

  20. Kuzenov, V.V., Lebo, A.I., Lebo, I.G., and Ryzhkov, S.V., Fiziko-matematicheskie modeli i metody rascheta vozdeistviya moshchnykh lazernykh i plazmennykh impul’sov na kondensirovannye i gazovye sredy (Physical-Mathematical Models and Calculation Methods for Powerful Laser and Plasma Pulse Effect on Condensed and Gas Media), Moscow: Mosk. Gos. Tekh. Univ., 2015.

    Google Scholar 

  21. Yabe, T., Xiao, F., and Utsumi, T., J. Comput. Phys., 2001, vol. 169, p. 556.

    Article  ADS  MathSciNet  Google Scholar 

  22. Tanaka, R., Nakamura, T., and Yabe, T., Exactly conservative semi-Lagrangian scheme in one dimension, Preprint of National Inst. for Fusion Science, Toki, 2001, no. NIFS-685.

    Google Scholar 

  23. Nakamura, T., Tanaka, R., Yabe, T., and Takizawa, K., J. Comput. Phys., 2001, vol. 174, p. 171.

    Article  ADS  MathSciNet  Google Scholar 

  24. Tolstykh, A.I., High Accuracy Non-Centered Compact Difference Schemes for Fluid Dynamics Applications, Singapore: World Sci., 1994.

    MATH  Google Scholar 

  25. Sod, G.A., J. Comput. Phys., 1978, vol. 27, p. 1.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuzenov.

Additional information

Original Russian Text © V.V. Kuzenov, S.V. Ryzhkov, 2016, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2016, Vol. 80, No. 5, pp. 659–663.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzenov, V.V., Ryzhkov, S.V. Developing a procedure for calculating physical processes in combined schemes of plasma magneto–inertial confinement. Bull. Russ. Acad. Sci. Phys. 80, 598–602 (2016). https://doi.org/10.3103/S1062873816030217

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873816030217

Navigation