Skip to main content
Log in

Multichannel vacuum arc discharge used for Z-pinch formation

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of the implosion dynamics and radiative characteristics of an aluminum Z-pinch formed from a plasma shell (PS). The PS with an initial diameter of 4 cm was produced with the help of a multichannel vacuum arc discharge and formed due to the evaporation of the electrode material in ten parallel arc discharges. The PS composition depended on the electrode material in the arc discharge. The described experiments were performed with aluminum electrodes. The total arc current was 80 kA. The PS implosion was provided by an IMRI-5 high-current generator with a current amplitude of 450 kA and rise time of 500 ns. The PS implosion resulted in the formation of a 0.2-cm-diameter plasma column with an electron temperature of 700–900 eV and average ion density of (5–8) × 1017 cm−3. The maximum radiation power per unit length in aluminum K-lines reached 300 MW/cm, the duration of the radiation pulse being 20 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Mazarakis, M. E. Cuneo, W. A. Stygar, et al., Phys. Rev. E 79, 016412 (2009).

    Article  ADS  Google Scholar 

  2. C. A. Coverdale, B. Jones, D. J. Ampleford, et al., High Energy Density Phys. 6, 143 (2010).

    Article  ADS  Google Scholar 

  3. C. A. Coverdale, C. Deeney, A. L. Velikovich, et al., Phys. Plasmas 14, 022706 (2007).

    Article  ADS  Google Scholar 

  4. V. V. Aleksandrov, V. A. Barsuk, E. V. Grabovski, et al., Plasma Phys. Rep. 35, 200 (2009).

    Article  ADS  Google Scholar 

  5. R. B. Baksht, A. V. Fedunin, A. Yu. Labetsky, et al., Plasma Phys. Controlled Fusion 43, 849 (2001).

    Article  ADS  Google Scholar 

  6. D. B. Sinars, L. Gregorian, D. A. Hammer, and Y. Maron, Proc. IEEE 92, 1110 (2004).

    Article  Google Scholar 

  7. P. F. Knapp, J. B. Greenly, P. A. Gourdain, et al., Phys. Plasmas 17, 012704 (2010).

    Article  ADS  Google Scholar 

  8. A. J. Harvey-Thompson, S. V. Lebedev, G. Burdiak, et al., Phys. Rev. Lett. 106, 205002 (2011).

    Article  ADS  Google Scholar 

  9. E. Kroupp, D. Osin, A. Starobinets, et al., Phys. Rev. Lett. 98, 115001 (2007).

    Article  ADS  Google Scholar 

  10. A. Yu. Labetsky, R. B. Baksht, V. I. Oreshkin, et al., IEEE Trans. Plasma Sci. 30, 524 (2002).

    Article  ADS  Google Scholar 

  11. G. Y. Yushkov, A. Anders, E. M. Oks, and I. G. Brown, J. Appl. Phys. 88, 5618 (2000).

    Article  ADS  Google Scholar 

  12. E. M. Oks, G. Y. Yushkov, K. P. Savkin, et al., IEEE Trans. Plasma Sci. 33, 1532 (2005).

    Article  ADS  Google Scholar 

  13. M. Bilek, A. Anders, and I. Brown, Plasma Sources Sci. Technol. 10, 606 (2001).

    Article  ADS  Google Scholar 

  14. I. Beilis, IEEE Trans. Plasma Sci. 29, 657 (2001).

    Article  ADS  Google Scholar 

  15. J. E. Daalder, J. Phys. D 8, 1647 (1975).

    Article  ADS  Google Scholar 

  16. R. B. Baksht, A. L. Velikovich, B. A. Kablambaev, et al., Sov. Tech. Phys. 32, 145 (1987).

    Google Scholar 

  17. R. B. Baksht, A. V. Fedunin, A. Yu. Labetsky, and A. G. Russkikh, IEEE Trans. Plasma Sci. 26, 1259 (1998).

    Article  ADS  Google Scholar 

  18. R. B. Baksht, I. M. Datsko, V. L. Oreshkin, et al., Plasma Phys. Rep. 22, 563 (1996).

    ADS  Google Scholar 

  19. A. G. Russkikh, V. I. Oreshkin, A. Yu. Labetskii, et al., Tech. Phys. 52, 571 (2007).

    Article  Google Scholar 

  20. M. A. Liberman, J. S. De Groot, A. Toor, and R. B. Spielman, Physics of High-Density Z-Pinch Plasmas (Springer-Verlag, New York, 1999).

    Book  Google Scholar 

  21. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000).

    Article  ADS  Google Scholar 

  22. J. P. Apruzese, K. G. Whitney, J. Davis, and P. C. Kepple, J. Quant. Spectrosc. Rad. Trans. 57, 41 (1997).

    Article  ADS  Google Scholar 

  23. S. A. Chaikovsky and S. A. Sorokin, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz. 42(12), 75 (1999).

    Google Scholar 

  24. V. I. Oreshkin, Russ. Phys. J. 38, 1203 (1995).

    Article  Google Scholar 

  25. D. Mosher, M. Krishnan, and N. Qi, IEEE Trans. Plasma Sci. 26, 1052 (1998).

    Article  ADS  Google Scholar 

  26. V. L. Kantsyrev, A. S. Safronova, D. A. Fedin, et al., IEEE Trans. Plasma Sci. 34, 194 (2006).

    Article  ADS  Google Scholar 

  27. K. G. Whitney, J. W. Thornhill, J. L. Giuliani, Jr., et al., Phys. Rev. E 50, 2166 (1994).

    Article  ADS  Google Scholar 

  28. R. B. Baksht, I. M. Datsko, A. F. Fedunin, et al., Plasma Phys. Rep. 21, 907 (1995).

    ADS  Google Scholar 

  29. A. V. Shishlov, R. B. Baksht, A. V. Fedunin, et al., Phys. Plasmas 7, 1252 (2000).

    Article  ADS  Google Scholar 

  30. H. Sze, P. L. Coleman, B. H. Failor, et al., Phys. Plasmas 7, 4223 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Rousskikh.

Additional information

Original Russian Text © A.G. Rousskikh, R.B. Baksht, A.S. Zhigalin, V.I. Oreshkin, S.A. Chaikovsky, N.A. Labetskaya, 2012, published in Fizika Plazmy, 2012, Vol. 38, No. 8, pp. 651–664.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousskikh, A.G., Baksht, R.B., Zhigalin, A.S. et al. Multichannel vacuum arc discharge used for Z-pinch formation. Plasma Phys. Rep. 38, 595–607 (2012). https://doi.org/10.1134/S1063780X12070094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12070094

Keywords

Navigation