Skip to main content
Log in

Theoretical and experimental studies of the radiative properties of matter at high energy densities and their application to the problems of inertial confinement fusion

  • Plasma Radiation
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper presents the results of theoretical and experimental studies of the radiative properties of plasmas produced by heating and compression of various materials to high energy densities. The specific features of the theoretical plasma model known as the ion model, which is used to calculate the radiative characteristics of plasmas of complex chemical composition, are discussed. The theoretical approach based on this model is applied to the plasma produced during the explosion of the X-pinch wires. The theoretical estimate of the radiation efficiency is compared with the experimental data on the total energy yield from an X-pinch made of two different wires (NiCr and Alloy 188). The radiative characteristics of (C12 H16 O8) and (C8 H12 O6) plasmas are calculated for the temperature diagnostics of plasmas produced from porous targets employed in inertial confinement fusion experiments with the use of laser radiation and heavy-ion beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Batani, R. Dtzulian, R. Redaelli, et al., Laser Part. Beams 25, 127 (2007).

    Article  ADS  Google Scholar 

  2. P. Adamek, O. Renner, L. Drska, et al., Laser Part. Beams 24, 511 (2006).

    Article  Google Scholar 

  3. N. Yu. Orlov, Contrib. Plasma Phys. 39, 177 (1999).

    Article  ADS  Google Scholar 

  4. O. B. Denisov, N. Yu. Orlov, S. Yu. Gus’kov, et al., Fiz. Plazmy 31, 742 (2005) [Plasma Phys. Rep. 31, 684 (2005)].

    Google Scholar 

  5. N. Yu. Orlov, S. Yu. Guskov, S. A. Pikuz, et al., Laser Part. Beams 25, 1 (2007).

    Article  Google Scholar 

  6. T. J. Orzechowski, M. D. Rosen, M. D. Korblum, et al., Phys. Rev. Lett. 77, 3545 (1996).

    Article  ADS  Google Scholar 

  7. N. Yu. Orlov, Laser Part. Beams 15, 627 (1997).

    Article  ADS  Google Scholar 

  8. N. Yu. Orlov and V. E. Fortov, Fiz. Plazmy 27, 45 (2001) [Plasma Phys. Rep. 27, 44 (2001)].

    Google Scholar 

  9. N. Yu. Orlov, Zh. Vychisl. Mat. Mat. Fiz. 27, 1058 (1987).

    MATH  Google Scholar 

  10. R. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75, 73 (1949).

    Article  Google Scholar 

  11. B. F. Rozsnyai, Phys. Rev. A 5, 1137 (1972).

    Article  ADS  Google Scholar 

  12. A. F. Nikiforov and V. B. Uvarov, Chisl. Metody Mekh. Sploshn. Sred 4(4), 114 (1973).

    Google Scholar 

  13. B. F. Rozsnyai, J. Quant. Spectrosc. Radiat. Transfer 27, 211 (1982).

    Article  ADS  Google Scholar 

  14. Ya. B. Zel’dovich and Yu. P. Raizer, Elements of Gas Dynamics and the Classical Theory of Shock Waves (Nauka, Moscow, 1966; Academic, New York, 1968).

    Google Scholar 

  15. D. H. H. Hoffmann and A. Blazevic, Laser Part. Beams 23, 47 (2005).

    ADS  Google Scholar 

  16. A. M. Khalenkov, N. G. Borisenko, V. N. Kondrashov, et al., Laser Part. Beams 24, 283 (2006).

    Article  ADS  Google Scholar 

  17. O. N. Rosmej, N. Zhidkov, V. Vatulin, et al., GSI Scientific Report 2009 (GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, 2010), p. 387.

    Google Scholar 

  18. O. N. Rosmej, N. Orlov, D. Schafer, et al., GSI Scientific Report 2009 (GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, 2010), p. 391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.B. Denisov, N.Yu. Orlov, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 9, pp. 841–847.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denisov, O.B., Orlov, N.Y. Theoretical and experimental studies of the radiative properties of matter at high energy densities and their application to the problems of inertial confinement fusion. Plasma Phys. Rep. 37, 785–791 (2011). https://doi.org/10.1134/S1063780X11080010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X11080010

Keywords

Navigation