Skip to main content
Log in

Breaking of a wake wave excited by a narrow laser pulse in a low-density plasma

  • Nonlinear Phenomena
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The spatial structure of a wake wave excited in a low-density plasma by a laser pulse with a small focal spot radius is studied both analytically and numerically. Numerical study shows that, in a small-amplitude laser field, a wake wave breaks after the formation of an off-axis density maximum, which grows in height away from the pulse to become infinitely high after several periods. Analytical and numerical calculations show that the singularity in the density arises from the intersection of the trajectories of neighboring particles. Numerical simulations demonstrate that, as the laser field amplitude increases, the breaking point of the wake wave rapidly approaches the pulse trailing edge. For weakly nonlinear conditions, an analytic dependence of the coordinate of the breaking point on the amplitude and transverse size of the laser pulse is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  2. L. M. Gorbunov and V. I. Kirsanov, Zh. Eksp. Teor. Fiz. 93, 509 (1987) [Sov. Phys. JETP 66, 290 (1987)].

    ADS  Google Scholar 

  3. J. R. Marques, J. P. Geindre, F. Amiranoff, et al., Phys. Rev. Lett. 76, 3566 (1996).

    Article  ADS  Google Scholar 

  4. C. W. Siders, S. P. LeBlanc, D. Fisher, et al., Phys. Rev. Lett. 76, 3570 (1996).

    Article  ADS  Google Scholar 

  5. J. R. Marques, F. Dorchies, P. Audebert, et al., Phys. Rev. Lett. 78, 3463 (1997).

    Article  ADS  Google Scholar 

  6. E. Takahashi, H. Honda, E. Miura, et al., Phys. Rev. E 60, 7247 (2000).

    Article  ADS  Google Scholar 

  7. N. H. Matlis, S. Reed, S. S. Bulanov, et al., AIP Conf. Proc. 877, 22 (2006).

    Article  ADS  Google Scholar 

  8. A. G. R. Thomas, S. P. D. Mangles, Z. Najmudin, et al., Phys. Rev. Lett. 98, 054802 (2007).

    Article  ADS  Google Scholar 

  9. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

    Article  ADS  Google Scholar 

  10. E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).

    Article  ADS  Google Scholar 

  11. L. M. Gorbunov and A. A. Frolov, Zh. Eksp. Teor. Fiz. 110, 1757 (1996) [JETP 83, 967 (1996)].

    Google Scholar 

  12. P. Sprangle, J. R. Penano, B. Hafizi, and C. A. Kapetonakos, Phys. Rev. E 69, 066415 (2004).

    Article  ADS  Google Scholar 

  13. L. M. Gorbunov and A. A. Frolov, Fiz. Plazmy 26, 688 (2000) [Plasma Phys. Rep. 26, 646 (2000)].

    Google Scholar 

  14. J. Yoshi, C. H. Lai, T. Katsouleas, et al., Phys. Rev. Lett. 79, 4194 (1997).

    Article  ADS  Google Scholar 

  15. M. I. Bakunov, S. V. Bodrov, A. V. Maslov, and A. M. Sergeev, Phys. Rev. E 70, 016401 (2004).

    Article  ADS  Google Scholar 

  16. L. M. Gorbunov and A. A. Frolov, Zh. Eksp. Teor. Fiz. 129, 1018 (2006) [Sov. Phys. JETP 102, 894 (2006)].

    Google Scholar 

  17. R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972), p. 33.

    Google Scholar 

  18. A. I. Akhiezer and R. V. Polovin, Zh. Eksp. Teor. Fiz. 30, 915 (1956) [Sov. Phys. JETP 3, 696 (1956)].

    Google Scholar 

  19. T. Katsouleas and W. Mori, Phys. Rev. Lett. 61, 90 (1988).

    Article  ADS  Google Scholar 

  20. J. B. Rosenzweig, Phys. Rev. A 38, 3634 (1988).

    Article  ADS  Google Scholar 

  21. E. Esarey and M. Piloff, Phys. Plasmas 2, 1432 (1995).

    Article  ADS  Google Scholar 

  22. Z. M. Sheng and J. Meyer-ter-Vehn, Phys. Plasmas 4, 493 (1997).

    Article  ADS  Google Scholar 

  23. R. M. G. M. Trines and P. A. Norreys, Phys. Plasmas 13, 123102 (2006).

    Article  ADS  Google Scholar 

  24. R. M. G. M. Trines, Phys. Rev. E 79, 056406 (2009).

    Article  ADS  Google Scholar 

  25. J. M. Dawson, Phys. Rev. 113, 383 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. L. M. Gorbunov, A. A. Frolov, E. V. Chizhonkov, and N. E. Andreev, Fiz. Plazmy 36, 375 (2010).

    Google Scholar 

  27. S. V. Bulanov, F. Pegoraro, A. M. Pukhov, and A. S. Sakharov, Phys. Rev. Lett. 78, 4205 (1997).

    Article  ADS  Google Scholar 

  28. S. V. Bulanov, F. Kalifano, G. I. Dudnikova, et al., Fiz. Plazmy 25, 517 (1999).

    Google Scholar 

  29. S. V. Bulanov, M. Yamagiva, T. Zh. Esirkepov, et al., Fiz. Plazmy 32, 291 (2006).

    Google Scholar 

  30. P. Mora and T. M. Antonsen, Phys. Plasmas 4, 217 (1997).

    Article  ADS  Google Scholar 

  31. A. Sh. Abdullaev, Yu. M. Aliev, and A. A. Frolov, Fiz. Plazmy 12, 827 (1986).

    Google Scholar 

  32. N. E. Andreev, E. V. Chizhonkov, and L. M. Gorbunov, Rus. J. Numer. Anal. Math. Modelling 13, 1 (1998).

    Article  MATH  Google Scholar 

  33. E. V. Chizhonkov and L. M. Gorbunov, Rus. J. Numer. Anal. Math. Modelling 16, 235 (2001).

    MATH  Google Scholar 

  34. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1978), p. 504 [in Russian].

    Google Scholar 

  35. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987).

    Google Scholar 

  36. A. V. Gaponov and M. A. Miller, Zh. Eksp. Teor. Fiz. 34, 242 (1958).

    Google Scholar 

  37. Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  38. Ya. B. Zel’dovich, A. V. Mamaev, and S. F. Shandarin, Usp. Fiz. Nauk 139, 153 (1983).

    Article  ADS  Google Scholar 

  39. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations (GITTL, Moscow, 1955; Gordon & Breach, New York, 1962).

    Google Scholar 

  40. L. M. Gorbunov, A. A. Frolov, and E. V. Chizhonkov, Vychisl. Metody Program. 9, 58 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Frolov, E.V. Chizhonkov, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 8, pp. 711–728.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolov, A.A., Chizhonkov, E.V. Breaking of a wake wave excited by a narrow laser pulse in a low-density plasma. Plasma Phys. Rep. 37, 663–679 (2011). https://doi.org/10.1134/S1063780X11060080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X11060080

Keywords

Navigation