Skip to main content
Log in

Generation of Narrow-Band THz Radiation by Collision of Laser Wake Waves with a Small-Scale Transverse Structure in a Plasma

  • RADIATION GENERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A new method was proposed to generate high-power narrow-band terahertz radiation in the process of nonlinear interaction of counterpropagating laser wake waves, the potential profiles of which are modulated in the transverse direction and do not coincide locally with each other. It was shown that, to achieve a high efficiency of radiation at the doubled plasma frequency, the period of such modulation should coincide with the length of the generated electromagnetic wave. Each of the plasma waves with such a small-scale transverse structure was proposed to be created by a pair of interfering laser pulses propagating at a small angle to each other. Numerical simulation by the particle-in-cell method confirmed such a scheme can provide a narrow (2%) spectral emission line and a high energy conversion efficiency at a level of 1%. With the XCELS design parameters, the proposed method opens the way to achieving a record terawatt radiation power in the THz frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kampfrath, T., Tanaka, K., and Nelson, K.A., Nat. Photonics, 2013, vol. 7, p. 680.

    Article  ADS  Google Scholar 

  2. Dhillon, S., Vitiello, M., Linfield, E., Davies, A., Hoffmann, M.C., Booske, J., Paoloni, C., Gensch, M., Weightman, P., Williams, G., et al., J. Phys. D: Appl. Phys., 2017, vol. 50, p. 043001.

    Article  ADS  Google Scholar 

  3. Zhang, D., Fallahi, A., Hemmer, M., Wu, X., Fakhari, M., Hua, Y., Cankaya, H., Calendron, A.-L., Zapata, L.E., Matlis, N.H., et al., Nat. Photonics, 2018, vol. 12, p. 336.

    Article  ADS  Google Scholar 

  4. Fülöp, J.A., Tzortzakis, S., and Kampfrath, T., Adv. Opt. Mater., 2020, vol. 8, p. 1.

    Article  Google Scholar 

  5. Hafez, H., Chai, X., Ibrahim, A., Mondal, S., Férachou, D., Ropagnol, X., and Ozaki, T., J. Opt., 2016, vol. 18, p. 093004.

    Article  ADS  Google Scholar 

  6. Tan, Z.Y., Wan, W.J., and Cao, J.C., Chin. Phys. B, 2020, vol. 29, p. 84212.

    Article  Google Scholar 

  7. Carr, G.L., Martin, M.C., McKinney, W.R., Jordan, K., Neil, G.R., and Williams, G.P., Nature, 2002, vol. 420, p. 153.

    Article  ADS  Google Scholar 

  8. Timofeev, I., Annenkov, V., and Volchok, E., Phys. Plasmas, 2017, vol. 24, p. 103106.

    Article  ADS  Google Scholar 

  9. Timofeev, I., Berendeev, E., Annenkov, V., and Volchok, E., Plasma Phys. Controlled Fusion, 2020, vol. 62, p. 045017.

    Article  ADS  Google Scholar 

  10. Timofeev, I., Berendeev, E., Annenkov, V., Volchok, E., and Trunov, V., Phys. Plasmas, 2021, vol. 28, p. 013103.

    Article  ADS  Google Scholar 

  11. Berendeev, E., Timofeev, I., Volchok, E., and Annenkov, V., J. Phys. Conf. Ser., 2021, vol. 2028, p. 012008.

    Article  Google Scholar 

  12. Khazanov, E. et al., High Power Laser Science and Engineering, 2023, pp. 1–77. https://doi.org/10.1017/hpl.2023.69

  13. Boris, J.P., Proc. Fourth Conf. Num. Sim. Plasmas, Washington, 1970, pp. 3–67.

  14. Yee, K., IEEE Trans. Antennas Propag., 1966, vol. 14, p. 302.

    Article  ADS  Google Scholar 

  15. Esirkepov, T.Z., Comput. Phys. Commun., 2001, vol. 135, p. 144.

    Article  ADS  Google Scholar 

  16. Exawatt Center for Extreme Light Studies (XCELS). https://xcels.ipfran.ru/img/site-XCELS.pdf.

  17. Irkutsk Supercomputer Center, Siberian Branch, Russian Academy of Sciences. https://hpc.icc.ru/.

  18. Center for Scientific IT-services, Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences. https://sits.ict.sc/.

Download references

ACKNOWLEDGMENTS

Numerical modeling was performed using the computing resources of the Irkutsk Supercomputer Center, SB, RAS, Irkutsk, Russia [17], and the Center for Scientific IT Services, Federal Research Center for Information and Computational Technologies, SB, RAS, Novosibirsk, Russia [18].

Funding

This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Timofeev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volchok, E.P., Annenkov, V.V., Berendeev, E.A. et al. Generation of Narrow-Band THz Radiation by Collision of Laser Wake Waves with a Small-Scale Transverse Structure in a Plasma. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S846–S853 (2023). https://doi.org/10.3103/S106833562319017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833562319017X

Keywords:

Navigation