Skip to main content
Log in

Study of plasma confinement in the L-2M stellarator during the formation of an edge transport barrier

  • Stellarators
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A plasma confinement mode characterized by the formation of an edge transport barrier (ETB) was discovered in the L-2M stellarator after boronization of the vacuum vessel wall. The transition into this mode is accompanied by a jump in the electron temperature by 100–200 eV at the plasma edge and a sharp increase in the gradient of the electron temperature T e in this region. The threshold power for the transition into the ETB confinement mode with an increased electron temperature gradient is P Tethr = (60 ± 15)n e [1019 m−3] kW. The formation of the ETB manifests itself also in a substantial change in the electron density profile. A density peak with a steep gradient at the outer side forms at the plasma edge. The threshold power for the transition into the ETB confinement mode corresponding to a substantial increase in the plasma density gradient near r = a is P Tethr = (67 ± 9)n e [1019 m−3] kW, which agrees to within experimental error with the threshold power for the transition into the ETB confinement mode determined from the sharp increase in the gradient of the electron temperature T e . The value of P thr for the L-2M stellarator agrees to within 25% with that obtained from the tokamak scaling. In the ETB confinement mode, the plasma energy W and the energy confinement time τ E determined from diamagnetic measurements increase by 20–30% as compared to those obtained from the stellarator scaling for the confinement mode without an ETB. When the heating power increases by a factor of 2–3 above the threshold value, the effects related to improved energy confinement disappear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Meshcheriakov, D. K. Akulina, G. M. Batanov, et al., Fiz. Plazmy 31, 496 (2005) [Plasma Phys. Rep. 31, 452 (2005)].

    Google Scholar 

  2. G. S. Voronov, E. V. Voronova, and D. K. Akulina, Plasma Phys. Controlled Fusion 48, A302 (2006).

    Article  Google Scholar 

  3. A. I. Meshcheryakov, S. E. Grebenshchikov, N. K. Kharchev, et al., J. Plasma Fusion Res. SERIES 1, 350 (1998).

    Google Scholar 

  4. D. K. Akulina, G. M. Batanov, and M. S. Berezhetskii, Fiz. Plazmy 29, 1108 (2003) [Plasma Phys. Rep. 29, 1028 (2003)].

    Google Scholar 

  5. M. S. Berezhetskii, V. P. Budaev, R. S. Ivanov, et al., J. Nucl. Mater. 162 (1989).

  6. Yu. V. Khol’nov, Tr. IOFAN 31, 117 (1991).

    Google Scholar 

  7. G. S. Voronov, Atomic Data Nucl. Data Tables 65, 1 (1997).

    Article  ADS  Google Scholar 

  8. http://www.silar.ru

  9. S. Okamura, T. Minami, T. Akiyama, et al., in Proceedings of the 20th IAEA Fusion Energy Conference, Vilamura, 2004, Paper EX/8-5Ra.

  10. E. J. Doyle, W. A. Houlberg, Y. Kamada, et al., Nucl. Fusion 47, 18 (2007).

    Article  ADS  Google Scholar 

  11. E. Righi, D. Bartlett, G. Conway, et al., Plasma Phys. Controlled Fusion 40, 721 (1998).

    Article  ADS  Google Scholar 

  12. ASDEX Team, Nucl. Fusion 29, 1959 (1989).

    Google Scholar 

  13. P. Gohill, T. C. Jernigan, J. T. Scovill, et al., Nucl. Fusion 49, 115 004 (2009).

    Article  Google Scholar 

  14. A. V. Knyazev, A. A. Letunov, and V. P. Logvinenko, Prib. Tekh. Éksp., No. 2, 105 (2004) [Instrum. Exp. Tech. 47, 230 (2006)].

  15. G. Voronov, Rev. Sci. Instrum. 79, 083 502 (2008).

    Article  Google Scholar 

  16. http://www-amdis.iaea.org/ALADDIN

  17. O. I. Fedyanin, D. K. Akulina, G. M. Batanov, et al., Fiz. Plazmy 33, 880 (2007) [Plasma Phys. Rep. 33, 805 (2007)].

    Google Scholar 

  18. O. I. Fedyanin, M. S. Berezhetskii, S. V. Shchepetov, et al., in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003, Paper P-4.

  19. N. Ohyabu, K. Narihara, H. Funaba, et al., Phys. Rev. Lett. 84, 103 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.S. Voronov, D.K. Akulina, G.M. Batanov, M.S. Berezhetskii, D.G. Vasil’kov, I.Yu. Vafin, E.V. Voronova, S.E. Grebenshchikov, I.A. Grishina, L.V. Kolik, N.F. Larionova, V.P. Logvinenko, D.V. Malakhov, A.I. Meshcheryakov, Yu.I. Nechaev, A.E. Petrov, K.A. Sarksyan, V.V. Saenko, N.N. Skvortsova, O.I. Fedyanin, N.K. Kharchev, Yu.V. Khol’nov, S.V. Shchepetov, 2010, published in Fizika Plazmy, 2010, Vol. 36, No. 7, pp. 595–601.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronov, G.S., Akulina, D.K., Batanov, G.M. et al. Study of plasma confinement in the L-2M stellarator during the formation of an edge transport barrier. Plasma Phys. Rep. 36, 551–557 (2010). https://doi.org/10.1134/S1063780X10070020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10070020

Keywords

Navigation