Skip to main content
Log in

Parameters of an ion beam and characteristic features of its slowing-down in a plasma during fast ignition of an inertial fusion target

  • Beams in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The physics of the heating of an inertial fusion target by a high-energy ion beam under the conditions of fast ignition of fusion reactions is studied theoretically. The characteristic features of the formation of the spatial distribution of the energy transferred to the plasma from a beam of ions with different initial energies, masses, and charges under fast ignition conditions are determined. The notion of the Bragg peak is extended with respect to the spatial distribution of the temperature of the ion-beam-heated medium. The parameters of the ion beams are determined with which to initiate different regimes of fast ignition of a thermonuclear fuel precompressed to a density of 300–500 g/cm3—the edge regime, in which the ignition region is formed at the outer boundary of the target, and the internal regime, in which the ignition region is formed within the target and, in particular, in its central parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res. 13, 396 (1992).

    Article  Google Scholar 

  2. M. Tabak, J. Hammer, M. E. Glinsky, et al., Phys. Plasmas 1, 1626 (1994).

    Article  ADS  Google Scholar 

  3. S. Yu. Gus’kov, S. L. Nedoseev, V. N. Smirnov, and B. Yu. Sharkov, Inertial Confinement Fusion (Fizmatlit, Moscow, 2005), p. 21 [in Russian].

    Google Scholar 

  4. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 310 (2006).

    Article  ADS  Google Scholar 

  5. G. A. Mourou, C. L. Labaune, M. Dunne, et al., Plasma Phys. Controlled Fusion 49, B667 (2007).

    Article  ADS  Google Scholar 

  6. J. Fuchs, P. Antici, E. d’Humieres, et al., Nature Phys. 2, 48 (2006).

    Article  ADS  Google Scholar 

  7. O. Klimo, J. Psikal, J. Limpouch, and V. T. Tikhonchuk, Phys, Rev. ST Accel. Beams 11, 031301 (2008).

    Article  ADS  Google Scholar 

  8. A. P. L. Robinson, M. Zepf, S. Kar, et al., New J. Phys. 10, 013021 (2008).

    Article  ADS  Google Scholar 

  9. S. Yu. Gus’kov, O. N. Krokhin, and V. B. Rozanov, Nucl. Fusion 16, 957 (1976).

    ADS  Google Scholar 

  10. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.

    Google Scholar 

  11. A. Caruso and V. A. Pais, Nucl. Fusion 36, 745 (1996).

    Article  ADS  Google Scholar 

  12. S. Yu. Gus’kov, in Proceedings of the 26th European Conference on Laser Interaction with Matter, Prague, 2001, Proc. SPIE 4424, 240 (2001).

    Google Scholar 

  13. S. Yu. Gus’kov, Kvantovaya Élektron. 31, 885 (2001) [Quant. Electron. 31, 885 (2001)].

    Article  Google Scholar 

  14. M. Roth, T. E. Cowan, M. H. Key, et al., Phys. Rev. Lett. 86, 436 (2001).

    Article  ADS  Google Scholar 

  15. A. Caruso and C. Strangio, Laser Part. Beams 19, 295 (2001).

    Article  ADS  Google Scholar 

  16. S. Atzeni, M. Temporal, and J. J. Honrubia, Nucl. Fusion 42, L1 (2002).

    Article  ADS  Google Scholar 

  17. M. Temporal, J. J. Honrubia, and S. Atzeni, Phys. Plasmas 9, 3098 (2002).

    Article  ADS  Google Scholar 

  18. M. Temporal, Phys. Plasmas 13, 122704 (2006).

    Article  ADS  Google Scholar 

  19. J. J. Honrubia, J. C. Fernandez, M. Temporal, et al., Phys. Plasmas 16, 102701 (2009).

    Article  ADS  Google Scholar 

  20. M. Temporal, R. Ramis, J. J. Honrubia, and S. Atzeni, Plasma Phys. Controlled Fusion 51, 035010 (2009).

    Article  ADS  Google Scholar 

  21. B. J. Albright, M. J. Schmitt, J. C. Fernandez, et al., J. Phys. Conf. Ser. 112, 022029 (2008).

    Article  ADS  Google Scholar 

  22. S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovsky, et al., Laser Part. Beams 16, 129 (1998).

    Article  ADS  Google Scholar 

  23. S. Yu. Gus’kov, N. V. Zmitrenko, D. V. Il’in, et al., Fiz. Plazmy 35, 771 (2009) [Plasma Phys. Rep. 35, 709 (2009)].

    Google Scholar 

  24. S. Yu. Gus’kov, A. A. Levkovskii, D. V. Il’in, et al., Fiz. Plazmy 11, 55 (1991) [Sov. J. Plasma Phys. 11, 30 (1991)].

    Google Scholar 

  25. A. Caruso, A. De Angelis, G. Gatti, et al., Phys. Lett. A 33, 336 (1970).

    Article  ADS  Google Scholar 

  26. N. Bohr, The Penetration of Atomic Particles through Matter (Munksgaard, Cobenhavn, 1948; Moscow, Inostrannaya Literatura, 1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.Yu. Gus’kov, D.V. Il’in, J. Limpouch, O. Klimo, V.E. Sherman, 2010, published in Fizika Plazmy, 2010, Vol. 36, No. 6, pp. 510–519.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gus’kov, S.Y., Il’in, D.V., Limpouch, J. et al. Parameters of an ion beam and characteristic features of its slowing-down in a plasma during fast ignition of an inertial fusion target. Plasma Phys. Rep. 36, 473–481 (2010). https://doi.org/10.1134/S1063780X10060048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10060048

Keywords

Navigation