Skip to main content
Log in

Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res. 13, 396 (1992).

    Article  Google Scholar 

  2. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, M. E. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 1626 (1994).

    Article  ADS  Google Scholar 

  3. A. Caruso and V. A. Pais, Nucl. Fusion 36, 745 (1996).

    Article  ADS  Google Scholar 

  4. S. Yu. Gus’kov, Kvantovaya Elektron. (Moscow) 31, 885 (2001).

    Article  Google Scholar 

  5. M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruh, F. Pegoraro, and S. V. Bulanov, Phys. Rev. Lett. 86, 436 (2001).

    Article  ADS  Google Scholar 

  6. H. Ruhl, S. V. Bulanov, T. E. Cowan, T. V. Lisekina, P. Nickles, F. Pegoraro, M. Roth, and W. Sandner, Plasma Phys. Rep. 27(5), 363 (2001).

    Article  ADS  Google Scholar 

  7. V. Yu. Bychenkov, W. Rozmus, A. Maksimchuk, D. Umstadter, and C. E. Capjack, Plasma Phys. Rep. 27(12), 1017 (2001).

    Article  ADS  Google Scholar 

  8. M. Murakami, H. Nagatomo, T. Sakaiya, H. Azechi, S. Fujioka, H. Shiraga, M. Nakai, K. Shigemori, H. Saito, S. Obenschain, M. Karasik, J. Gardner, J. Bates, D. Colombant, J. Weaver, and Y. Aglitskiy, Plasma Phys. Controlled Fusion 47, B815 (2005).

    Article  Google Scholar 

  9. J. C. Fernandez, J. J. Honrubia, B. J. Albright, K. A. Flippo, D. C. Gautier, B. M. Hegelich, M. J. Schmitt, M. Temporal, and L. Yin, Nucl. Fusion 49, 065004 (2009).

    Article  ADS  Google Scholar 

  10. S. Yu. Gus’kov, Plasma Phys. Rep. 39(1), 1 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Atzeni, M. Temporal, and J. J. Honrubia, Nucl. Fusion 42, L1 (2002).

    Article  ADS  Google Scholar 

  12. S. Yu. Gus’kov, Laser Part. Beams 23, 255 (2005).

    ADS  Google Scholar 

  13. J. J. Honrubia, J. C. Fernandez, M. Temporal, B. M. Hegelich, and J. Meyer-ter-Vehn, Phys. Plasmas 16, 102701 (2009).

    Article  ADS  Google Scholar 

  14. S. Yu. Gus’kov, D. V. Il’in, J. Limpouch, O. Klimo, and V. E. Sherman, Plasma Phys. Rep. 36(6), 473 (2010).

    Article  ADS  Google Scholar 

  15. A. Caruso and C. Strangio, Laser Part. Beams 19, 295 (2001).

    Article  ADS  Google Scholar 

  16. V. T. Tikhonchuk, T. Schlegel, C. Regan, J.-L. Feugeas, Ph. Nicolai, and X. Ribeyre, Nucl. Fusion 50, 045003 (2010).

    Article  ADS  Google Scholar 

  17. V. T. Tikhonchuk, T. Schlegel, N. Naumova, I. V. Sokolov, C. Regan, M. Temporal, J.-L. Feugeas, Ph. Nicolai, X. Ribeyre, C. Labaune, and G. Mourou, J. Phys.: Conf. Ser. 244, 022069 (2010).

    ADS  Google Scholar 

  18. C. Regan, T. Schlegel, V. T. Tikhonchuk, J. Honrubia, J.-L. Feugeas, and Ph. Nicolai, Plasma Phys. Controlled Fusion 53, 045014 (2011).

    Article  ADS  Google Scholar 

  19. S. Yu. Gus’kov, D. V. Il’in, and V. E. Sherman, Plasma Phys. Rep. 40(7), 572 (2014).

    Article  ADS  Google Scholar 

  20. N. V. Zmitrenko, V. YA. Karpov, and A. P. Fadeev, Vopr. At. Nauki Tech., Ser.: Metod. Programmy Chislennogo Resheniya Zadach Mat. Fiz. 2, 38 (1982).

    Google Scholar 

  21. O. R. Gasparyan, S. Yu. Gus’kov, D. V. Il’in, V. E. Sherman, and N. V. Zmitrenko, J. Russ. Laser Res. 34, 33 (2013).

    Article  Google Scholar 

  22. S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovsky, V. B. Rozanov, V. E. Sherman, and O. B. Vygodsky, Laser Part. Beams 16, 129 (1998).

    Article  ADS  Google Scholar 

  23. S. Atzeni, A. Schiavi, J. J. Honrubia, X. Ribeyre, G. Schurtz, Ph. Nicolai, M. Olazabal-Loumé, C. Bellei, R. G. Evans, and J. R. Davies, Phys. Plasmas 15, 056311 (2008).

    Article  ADS  Google Scholar 

  24. M. Dunne, N. Alexander, F. Amiranoff, P. Auger, S. Atzeni, H. Azechi, V. Bagnoud, P. Balcou, J. Badziak, D. Batani, C. Bellei, D. Besnard, R. Bingham, J. Breil, M. Borghesi, S. Borneis, A. Caruso, J. C. Chanteloup, R. J. Clarke, J. L. Collier, J. R. Davies, J. P. Dufour, P. Estrailler, R. L. Evans, M. Fajardo, R. Fedosejevs, G. Figueria, J. Fils, J. L. Feugeas, M. Galimberti, J.-C. Gauthier, A. Giulietti, L. A. Gizzi, D. Goodin, G. Gregori, S. Gus’kov, L. Hallo, C. Hermandez-Gomez, D. Hoffman, J. Honrubia, S. Jacquemot, M. Key, J. Kilkenny, R. Kingham, M. Koenig, F. Kovacs, A. McEvoy, P. McKenna, J. T. Mendonca, J. Meyer-ter-Vehn, K. Mima, G. Mourou, S. Moustazis, Z. Najmudin, P. Nickles, D. Neely, P. Norreys, M. Olazabal, A. Offenberger, N. Papodogianis, J. M. Perlado, J. Ramirez, R. Ramis, Y. Rhee, X. Ribeyre, A. Robinson, K. Rohlena, S. Rose, M. Roth, C. Rouyer, C. Rulliere, B. Rus, W. Sandner, A. Schiavi, G. Schurtz, A. Sergeev, M. Sherlock, L. Silva, R. Smith, G. Sorasio, C. Strangio, H. Takabe, M. Tatarakis, V. Tikhonchuk, M. Tolley, M. Vaselli, P. Velarde, T. Winstone, K. Witte, J. Wolowski, N. Woolsey, B. Wyborn, and M. Zepf, HiPER: The European High-Power Laser Energy Research Facility (Technical Background and Conceptual Design Report, 2007).

    Google Scholar 

  25. V. A. Shcherbakov, Sov. J. Plasma Phys. 9(2), 240 (1983).

    MathSciNet  Google Scholar 

  26. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).

    Article  ADS  Google Scholar 

  27. X. Ribeyre, Ph. Nikolai, G. Schurtz, M. Olazabal-Loume, J. Breil, P. H. Maire, J. L. Feugeas, L. Hallo, and V. T. Tikhonchuket, Plasma Phys. Controlled Fusion 50, 025007 (2008).

    Article  ADS  Google Scholar 

  28. S. Yu. Gus’kov, N. V. Zmitrenko, and V. B. Rozanov, J. Russ. Laser Res. 32, 596 (2011).

    Article  Google Scholar 

  29. S. Yu. Gus’kov, N. V. Zmitrenko, D. V. Il’in, A. A. Levkovskii, V. B. Rozanov, and V. E. Sherman, Plasma Phys. Rep. 35(9), 709 (2009).

    Article  ADS  Google Scholar 

  30. D. V. Sivukhin, Vopr. Teor. Plazmy, No. 4, 81 (1964).

    Google Scholar 

  31. N. G. Basov, O. B. Vygovskii, S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovskii, V. B. Rozanov, and V. E. Sherman, Sov. J. Plasma Phys. 12(8), 526 (1986).

    Google Scholar 

  32. V. S. Belyaev, V. P. Krainov, and V. S. Lisitsa, A. P. Matafonov, Phys.—Usp. 51(8), 793 (2008).

    Article  Google Scholar 

  33. H. Azechi, in Book of Abstracts of the Seventh Conference on Inertial Fusion Sciences and Applications (IFSA 2011), Bordeaux, France, September 12–16, 2011 (Bordeaux, 2011), p. 121.

    Google Scholar 

  34. S. Yu. Gus’kov, A. A. Levkovskii, D. V. Il’in, and V. B. Rozanov, Fiz. Plazmy 11, 55 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Gus’kov.

Additional information

Original Russian Text © S.Yu. Gus’kov, N.V. Zmitrenko, D.V. Il’in, V.E. Sherman, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 5, pp. 1090–1105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gus’kov, S.Y., Zmitrenko, N.V., Il’in, D.V. et al. Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam. J. Exp. Theor. Phys. 119, 958–970 (2014). https://doi.org/10.1134/S1063776114110077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114110077

Keywords

Navigation