Skip to main content
Log in

Thermodynamic properties of two-dimensional nonideal structures with isotropic pair potential

  • Nonideal Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An approximation is proposed for energy density in two-dimensional nonideal systems for a wide class of isotropic repulsive pair interparticle potentials. The approximation allows one to determine the main thermodynamic functions and characteristics of the system by using well-known thermodynamic formulas. The results obtained with the help of this approximation are compared with the data of numerical simulations of thermodynamic properties of the structures under study. The simulations were performed in a wide range of parameters typical of laboratory dusty plasmas. Main attention was paid to the screened Coulomb potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Ailawadi, Phys. Rep. 57, 241 (1980).

    Article  ADS  Google Scholar 

  2. N. H. March and M. P. Tosi, Introduction to Liquid State Physics (World Scientific, Singapore, 1995).

    Google Scholar 

  3. A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyy, Kinetics of Diffusion Controlled Chemical Processes (Khimiya, Moscow, 1986; Nova Science, New York, 1989).

    Google Scholar 

  4. Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York, 1974).

    Google Scholar 

  5. N. P. Kovalenko and I. Z. Fisher, Usp. Fiz. Nauk 108, 209 (1972) [Sov. Phys. Usp. 15, 592 (1973)].

    Google Scholar 

  6. G. A. Hebner, M. E. Riley, and K. E. Greenberg, Phys. Rev. E 66, 046 407 (2002).

    Google Scholar 

  7. H. Totsuji, T. Kishimoto, Y. Inoue, et al., Phys. Lett. A 221, 215 (1996).

    Article  ADS  Google Scholar 

  8. O. S. Vaulina, K. G. Adamovich, and I. E. Dranzhevskii, Fiz. Plazmy 31, 612 (2005) [Plasma Phys. Rep. 31, 562 (2005)].

    Google Scholar 

  9. H. Totsuji, M. S. Liman, C. Totsuji, et al., Phys. Rev. E 70, 016 405 (2004).

  10. D. C. Glattli, E. Y. Andrei, and F. I. B. Williams, Phys. Rev. Lett. 60, 420 (1988).

    Article  ADS  Google Scholar 

  11. R. E. Kusner, J. A. Mann, J. Kerins, and A. J. Dahm, Phys. Rev. Lett. 73, 3113 (1994).

    Article  ADS  Google Scholar 

  12. A. H. Marcus and S. A. Rice, Phys. Rev. Lett. 77, 2577 (1996).

    Article  ADS  Google Scholar 

  13. R. Seshadri and R. Westervelt, Phys. Rev. Lett. 66, 2774 (1991).

    Article  ADS  Google Scholar 

  14. K. Zang and G. Marlet, Phys. Rev. Lett. 85, 3656 (2000).

    Article  ADS  Google Scholar 

  15. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005).

    Book  MATH  Google Scholar 

  16. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).

    Article  ADS  Google Scholar 

  17. S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev. E 56, 4671 (1997).

    Article  ADS  Google Scholar 

  18. R. T. Farouki and S. Hamaguchi, Appl. Phys. Lett. 61, 2973 (1992).

    Article  ADS  Google Scholar 

  19. P. Hartmann, G. J. Kalman, Z. Donko, and K. Kutasi, Phys. Rev. E 72, 026 409 (2005).

    Google Scholar 

  20. G. Kalman, P. Hartmann, Z. Donko, and M. Rosenberg, Phys. Rev. Lett. 92, 065 001 (2004).

    Google Scholar 

  21. X. G. Adamovich, O. S. Vaulina, and I. E. Dranzhevsky, Czech. J. Phys. 56(Suppl. B), 591 (2006).

    Article  Google Scholar 

  22. H. Totsuji, M. S. Liman, C. Totsuji, et al., Phys. Rev. E 70, 016 405 (2004).

  23. O. S. Vaulina, X. G. Adamovich, O. F. Petrov, and V. E. Fortov, Phys. Rev. E 77, 066 403 (2008).

    Google Scholar 

  24. O. S. Vaulina, X. G. Adamovich, O. F. Petrov, and V. E. Fortov, Phys. Rev. E 77, 066 404 (2008).

    Google Scholar 

  25. O. S. Vaulina and I. E. Drangevski, Phys. Scr. 73, 577 (2006).

    Article  ADS  Google Scholar 

  26. O. S. Vaulina, O. F. Petrov, V. E. Fortov, et al., Fiz. Plazmy 29, 698 (2003) [Plasma Phys. Rep. 29, 642 (2003)].

    Google Scholar 

  27. U. Konopka, L. Ratke, and H. M. Thomas, Phys. Rev. Lett. 79, 1269 (1997).

    Article  ADS  Google Scholar 

  28. J. E. Daugherty, R. K. Porteous, M. D. Kilgore, and D. B. Graves, J. Appl. Phys. 72, 3934 (1992).

    Article  ADS  Google Scholar 

  29. J. E. Allen, Phys. Scr. 45, 497 (1992).

    Article  ADS  Google Scholar 

  30. D. Montgomery, G. Joyce, and R. Sugihara, Plasma Phys. 10, 681 (1968).

    Article  ADS  Google Scholar 

  31. O. S. Vaulina, I. E. Drangevski, X. G. Adamovich, et al., Phys. Rev. Lett. 97, 95 001 (2006).

    Google Scholar 

  32. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  33. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Article  ADS  Google Scholar 

  34. A. P. Young, Phys. Rev. B 19, 1855 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.S. Vaulina, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 5, pp. 427–436.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaulina, O.S. Thermodynamic properties of two-dimensional nonideal structures with isotropic pair potential. Plasma Phys. Rep. 35, 385–393 (2009). https://doi.org/10.1134/S1063780X09050031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09050031

PACS numbers

Navigation