Skip to main content
Log in

Progress in theory of instabilities in a rotating plasma

  • Plasma Instability
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A review is given of the basic results of modern theory of instabilities in a rotating plasma. Both axisymmetric and nonaxisymmetric perturbations are considered. Main attention is given to the magnetorotational instability (MRI), discovered earlier by Velikhov, and the rotational-convective instability (RCI) discussed in a number of papers of astrophysical trend. For qualitative explanation of the results, a local approach is used which, with equilibrium plasma pressure gradient and/or nonsymmetry of perturbations, requires operation with nonlocal azimuthal perturbed magnetic field. The gravity and effects of pressure anisotropy are taken into account. In addition to hydrodynamic, the electrodynamic approach is formulated. The drift effects are considered. Analyzed are the ideal instabilities and those depending on the dissipative effects: viscosity and heat conductivity. The MRI is considered at presence of the charged dust particles. Besides the local approach, the nonlocal approach is formulated for the plasma model with a steplike profile of angular rotation frequency. Alongside with perturbations which frequencies are small compared to the ion cyclotron frequency, the perturbations are analyzed with frequencies larger than the ion cyclotron frequency. The latter corresponds to the Hall regime and subregime of nonmagnetized plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Usp. Fiz. Nauk 73, 701 (1961) [Sov. Phys. Usp. 4, 332 (1961)].

    Google Scholar 

  2. M. N. Rosenbluth and A. Simon, Phys. Fluids 8, 1300 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. B. Mikhailovskii, Theory of Plasma Instabilities (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974), Vol. 2: Instabilities in an Inhomogeneous Plasma.

    Google Scholar 

  4. E. P. Velikhov, Zh. Éksp. Teor. Fiz. 36, 1398 (1959) [Sov. Phys. JETP 9, 995 (1959)].

    Google Scholar 

  5. S. Chandrasekhar, Proc. Nat. Acad. Sci. U.S.A. 46, 253 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).

    Article  ADS  Google Scholar 

  7. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  8. S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1 (1998).

    Article  ADS  Google Scholar 

  9. J. F. Hawley and S. A. Balbus, Astrophys. J. 376, 223 (1991).

    Article  ADS  Google Scholar 

  10. J. F. Hawley and S. A. Balbus, Astrophys. J. 400, 595 (1992).

    Article  ADS  Google Scholar 

  11. S. A. Balbus and J. F. Hawley, Astrophys. J. 400, 610 (1992).

    Article  ADS  Google Scholar 

  12. J. F. Hawley and S. A. Balbus, Ann. N. Y. Acad. Sci. 675, 9 (1992).

    Article  ADS  Google Scholar 

  13. S. A. Balbus, Astrophys. J. 413, L137 (1993).

    Article  ADS  Google Scholar 

  14. S. A. Balbus and J. F. Hawley, Mon. Not. R. Astron. Soc. 266, 769 (1994).

    ADS  Google Scholar 

  15. O. M. Blaes and S. A. Balbus, Astrophys. J. 421, 163 (1994).

    Article  ADS  Google Scholar 

  16. B. Coppi, Plasma Phys. Controlled Fusion 36, B107 (1994).

    Article  ADS  Google Scholar 

  17. J. F. Hawley, C. F. Gammie, and S. A. Balbus, Astrophys. J. 440, 742 (1995).

    Article  ADS  Google Scholar 

  18. S. H. Lubow and H. C. Spruit, Astrophys. J. 445, 337 (1995).

    Article  ADS  Google Scholar 

  19. R. Matsumoto and T. Tajima, Astrophys. J. 445, 767 (1995).

    Article  ADS  Google Scholar 

  20. H. C. Spruit, R. Stehle, and J. C. B. Papaloizou, Mon. Not. R. Astron. Soc 275, 1223 (1995).

    ADS  Google Scholar 

  21. W. T. Kim and E. C. Ostriker, Astrophys. J. 540, 372 (2000).

    Article  ADS  Google Scholar 

  22. E. Quataert, W. Dorland, and G. W. Hammett, Astrophys. J. 577, 524 (2002).

    Article  ADS  Google Scholar 

  23. D. A. Shalybkov, G. Rudiger, and M. Schultz, Astron. Astrophys. 395, 339 (2002).

    Article  ADS  Google Scholar 

  24. P. Sharma, G. W. Hammett, and E. Quataert, Astrophys. J. 596, 1121 (2003).

    Article  ADS  Google Scholar 

  25. F. Yamoto and M. Sekiya, Icarus 170, 180 (2004).

    Article  ADS  Google Scholar 

  26. V. Urpin and G. Rudiger, Astron. Astrophys. 437, 23 (2005).

    Article  ADS  Google Scholar 

  27. C. P. Dullemond and C. Dominik, Astron. Astrophys. 434, 971 (2005).

    Article  MATH  ADS  Google Scholar 

  28. L. Barriere_Forchet, J. F. Gonzales, J. R. Murray, et al., Astron. Astrophys. 443, 185 (2005).

    Article  ADS  Google Scholar 

  29. M. Pessah and D. Psaltis, Astrophys. J. 628, 901 (2005).

    Article  Google Scholar 

  30. P. Sharma, G. W. Hammett, E. Quataert, et al., Astrophys. J. 637, 952 (2006).

    Article  ADS  Google Scholar 

  31. K. Ferriere, Space Sci. Rev. 122, 247 (2006).

    Article  ADS  Google Scholar 

  32. H. Nomura and Y. Nakagawa, Astrophys. J. 640, 1099 (2006).

    Article  ADS  Google Scholar 

  33. J. H. Krolik and E. G. Zweibel, Astrophys. J. 644, 651 (2006).

    Article  ADS  Google Scholar 

  34. N. M. Ferraro, Astrophys. J. 662, 512 (2007).

    Article  ADS  Google Scholar 

  35. C. W. Ormel, M. Spaans, and A. G. G. M. Tielens, Astron. Astrophys. 461, 215 (2007).

    Article  ADS  Google Scholar 

  36. E. Quataert, Astrophys. J. 673, 758 (2008).

    Article  ADS  Google Scholar 

  37. S. H. Hong and H. E. Wilhelm, J. Appl. Phys. 47, 906 (1976).

    Article  ADS  Google Scholar 

  38. H. Ji, G. Goodman, and A. Kageyama, Mon. Not. R. Astron. Soc. 325, 11 (2001).

    Article  Google Scholar 

  39. K. Noguchi, V. I. Pariev, S. A. Colgate, et al., Astrophys. J. 575, 1151 (2002).

    Article  ADS  Google Scholar 

  40. G. Rudiger, M. Schultz, and D. Shalybkov, Phys. Rev. E 67, 046312 (2003).

    Google Scholar 

  41. D. R. Sisan, N. Mujica, W. A. Tillotson, et al., Phys. Rev. Lett. 93, 114502 (2004).

    Google Scholar 

  42. E. P. Velikhov, A. A. Ivanov, V. P. Lakhin, and K. S. Serebrennikov, Phys. Lett. A 355, 357 (2006).

    Article  ADS  Google Scholar 

  43. E. P. Velikhov, A. A. Ivanov, S. V. Zakharov, et al., Phys. Lett. A 358, 216 (2006).

    Article  MATH  ADS  Google Scholar 

  44. I. V. Khal’zov, V. I. Ilgisonis, A. I. Smolyakov, and E. P. Velikhov, Phys. Fluids 18, 124107 (2006).

    Google Scholar 

  45. V. P. Lakhin and E. P. Velikhov, Phys. Lett. A 360, 98 (2007).

    Article  ADS  Google Scholar 

  46. V. I. Ilgisonis and I. V. Khal’zov, Pis’ma Zh. Éksp. Teor. Fiz. 86, 815 (2007) [JETP Lett. 86, 705 (2007)].

    Google Scholar 

  47. E. P. Velikhov, Pis’ma Zh. Éksp. Teor. Fiz. 82, 789 (2005) [JETP Lett. 82, 690 (2005)].

    Google Scholar 

  48. A. Y. Aydemir, Phys. Plasmas 11, 5065 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  49. Y. M. Huang and A. B. Hassam, Phys. Plasmas 10, 204 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  50. S. W. Ng and A. B. Hassam, Phys. Plasmas 12, 064504 (2005).

    Google Scholar 

  51. E. Frieman and N. Rotenberg, Rev. Mod. Phys. 32, 898 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. E. Hameiri, J. Math. Phys. 22, 2080 (1981).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. A. Bondeson, R. Iacono, and A. Bhattacharjee, Phys. Fluids 30, 2167 (1987).

    Article  MATH  ADS  Google Scholar 

  54. R. Keppens, F. Casse, and J. P. Goedbloed, Astrophys. J. 569, L121 (2002).

    Article  ADS  Google Scholar 

  55. H. Ji, P. Kronberg, S. C. Prager, et al., Phys. Plasmas 15, 058 302 (2008).

  56. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Zh. Éksp. Teor. Fiz. 133, 183 (2008) [JETP 106, 154 (2008)].

    Google Scholar 

  57. A. B. Mikhailovskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1967), Vol. 3.

    Google Scholar 

  58. B. B. Kadomtsev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.

    Google Scholar 

  59. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Fiz. Plazmy 34, 908 (2008) [Plasma Phys. Rep. 34, 837 (2008)].

    Google Scholar 

  60. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Phys. Lett. A 372, 3274 (2008).

    Article  ADS  Google Scholar 

  61. A. B. Mikhailovskii, J. G. Lominadze, R. M. O. Galvao, et al., Phys. Plasmas 15, 052 103 (2008).

    Google Scholar 

  62. A. B. Mikhailovskii, Instabilities in a Confined Plasma (IOP, Bristol, 1998).

    Google Scholar 

  63. R. Kulsrud, in Handbook of Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1984; Énergoatomizdat, Moscow, 1983, 1984), Vol. 1.

    Google Scholar 

  64. A. B. Mikhailovskii, J. G. Lominadze, A. I. Smolyakov, et al., Phys. Plasmas 15, 062 904 (2008).

    Google Scholar 

  65. G. I. Budker, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1959), Vol. 1.

    Google Scholar 

  66. A. Schluter, Z. Naturforsch. A 12, 822 (1957).

    ADS  MathSciNet  Google Scholar 

  67. V. S. Tsypin, Zh. Tekh. Fiz. 42, 727 (1972) [Sov. Phys. Tech. Phys. 17, 573 (1972)].

    Google Scholar 

  68. A. B. Mikhailovskii, Electromagnetic Instabilities in an Inhomogeneous Plasma (Énergoatomizdat, Moscow, 1991; IOP, Bristol, 1992).

    Google Scholar 

  69. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Phys. Lett. A 372, 3846 (2008).

    Article  ADS  Google Scholar 

  70. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Zh. Éksp. Teor. Fiz. 134, 1238 (2008) [JETP 107, 1061 (2008)].

    Google Scholar 

  71. A. A. Vedenov and R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1959), Vol. 3.

    Google Scholar 

  72. L. A. Rudakov and R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1959), Vol. 3.

    Google Scholar 

  73. S. Chandrasekhar, A. N. Kaufman, and K. M. Watson, Proc. Roy. Soc. London A 245, 435 (1958).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. E. N. Parker, Phys. Rev. 109, 1874 (1958).

    Article  MATH  ADS  Google Scholar 

  75. A. B. Kitsenko and K. N. Stepanov, Zh. Éksp. Teor. Fiz. 38, 1840 (1960) [Sov. Phys. JETP 11, 1323 (1960)].

    Google Scholar 

  76. A. B. Mikhailovskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1972; Consultants Bureau, New York, 1975), Vol. 6.

    Google Scholar 

  77. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Zh. Éksp. Teor. Fiz. 133, 429 (2008) [JETP 106, 371 (2008)].

    Google Scholar 

  78. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Plasma Phys. Controlled Fusion 50, 085 012 (2008).

    Google Scholar 

  79. J. G. Lominadze, A. B. Mikhailovskii, A. P. Churikov, et al., Bull. Georg. Nat. Acad. Sci. 2(4) (2008).

  80. J. G. Lominadze, A. B. Mikhailovskii, A. I. Smolyakov, et al., Bull. Georg. Nat. Acad. Sci. 3 (2009) (in press).

  81. A. B. Mikhailovskii, A. I. Smolyakov, J. G. Lominadze, et al., Fiz. Plazmy 35 (2009) (in press).

  82. J. G. Lominadze, E. A. Pashitskii, A. B. Mikhailovskii, et al., Bull. Georg. Nat. Acad. Sci. 2(3), 48 (2008).

    Google Scholar 

  83. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.

    Google Scholar 

  84. S. A. Balbus, Astrophys. J. 562, 909 (2001).

    Article  ADS  Google Scholar 

  85. A. B. Mikhailovskii, S. V. Vladimirov, J. G. Lominadze, et al., Phys. Plasmas 15, 014 504 (2008).

    Google Scholar 

  86. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Plasma Phys. Controlled Fusion 50, 085015 (2008).

    Google Scholar 

  87. N. F. Cramer and S. V. Vladimirov, Phys. Plasmas 3, 4740 (1996).

    Article  ADS  Google Scholar 

  88. N. F. Cramer, L. K. Yeung, and S. V. Vladimirov, Phys. Plasmas 5, 3126 (1998).

    Article  ADS  Google Scholar 

  89. M. Kruskal and M. Schwartzschild, Proc. Roy. Soc. A 233, 348 (1954).

    ADS  Google Scholar 

  90. A. B. Mikhailovskii, Theory of Plasma Instabilities (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974), Vol. 1: Instabilities in a Homogeneous Plasma.

    Google Scholar 

  91. A. B. Mikhailovskii, J. G. Lominadze, R. M. O. Galvao, et al., Phys. Plasmas 15, 052109 (2008).

    Google Scholar 

  92. A. B. Mikhailovskii, V. D. Pustovitov, R. M. O. Galvao, C. H. S. Amador, et al., Brazil. J. Phys. 39, 73 (2009).

    Google Scholar 

  93. M. Wardle, Mon. Not. Roy. Astron. Soc. 307, 849 (1999).

    Article  ADS  Google Scholar 

  94. S. A. Balbus and C. Terquem, Astrophys. J. 552, 235 (2001).

    Article  ADS  Google Scholar 

  95. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, et al., Plasma Electrodynamics (Nauka, Moscow, 1974; Pergamon, Oxford, 1975).

    Google Scholar 

  96. V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1967), Vol. 3.

    Google Scholar 

  97. N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (Academic, New York, 1973; Mir, Moscow, 1975).

    Google Scholar 

  98. A. B. Mikhailovskii, J. G. Lominadze, R. M. O. Galvao, et al., Phys. Plasmas 14, 112108 (2007).

    Google Scholar 

  99. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Phys. Lett. A 372, 49 (2007).

    Article  ADS  Google Scholar 

  100. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Fiz. Plazmy 34, 736 (2008) [Plasma Phys. Rep. 34, 768 (2008)].

    Google Scholar 

  101. E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).

    Article  ADS  Google Scholar 

  102. A. B. Mikhailovskii, J. G. Lominadze, R. M. O. Galvao, et al., Fiz. Plazmy 34, 589 (2008) [Plasma Phys. Rep. 34, 538 (2008)].

    Google Scholar 

  103. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Phys. Plasmas 14, 112104 (2007).

    Google Scholar 

  104. A. B. Mikhailovskii, A. M. Fridman, A. P. Churikov, et al., Dokl. Akad. Nauk 424, 181 (2009) [Phys. Dokl. 54, 6 (2009)].

    Google Scholar 

  105. A. B. Mikhailovskii, A. M. Fridman, A. P. Churikov, et al., Plasma Phys. Controlled Fusion 51, 045 003 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.B. Mikhailovskii, J.G. Lominadze, A.P. Churikov, V.D. Pustovitov, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 4, pp. 307–350.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailovskii, A.B., Lominadze, J.G., Churikov, A.P. et al. Progress in theory of instabilities in a rotating plasma. Plasma Phys. Rep. 35, 273–314 (2009). https://doi.org/10.1134/S1063780X09040035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09040035

PACS numbers

Navigation