Skip to main content
Log in

Axisymmetric magnetorotational instability in ideal and viscous laboratory plasmas

  • Plasma Instability
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The original analysis of the axisymmetric magnetorotational instability (MRI) by Velikhov (Sov. Phys. JETP 9, 995 (1959)) and Chandrasekhar (Proc. Nat. Acad. Sci. 46, 253 (1960)), applied to the ideally conducting magnetized medium in the laboratory conditions and restricted to the incompressible approximation, is extended by allowing for the compressibility. Thereby, two additional driving mechanisms of MRI are revealed in addition to the standard drive due to the negative medium rotation frequency gradient (the Velikhov effect). One is due to the squared medium pressure gradient and another is a combined effect of the pressure and density gradients. For laboratory applications, the expression for the MRI boundary with all the above driving mechanisms and the stabilizing magnetoacoustic effect is derived. The effects of parallel and perpendicular viscosities on the MRI in the laboratory plasma are investigated. It is shown that, for strong viscosity, there is a family of MRI driven for the same condition as the ideal one. It is also revealed that the presence of strong viscosity leads to additional family of instabilities called the viscosity-driven MRI. Then the parallel-viscositydriven MRI looks as an overstability (oscillatory instability) possessing both the growth rate and the real part of oscillation frequency, while the perpendicular-viscosity MRI is the aperiodical instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Velikhov, Zh. Éksp. Teor. Fiz. 36, 1398 (1959) [Sov. Phys. JETP 9, 995 (1959)].

    Google Scholar 

  2. S. Chandrasekhar, Proc. Nat. Acad. Sci. 46, 253 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).

    Article  ADS  Google Scholar 

  4. I. V. Khal’zov, V. I. Ilgisonis, A. I. Smolyakov, and E. P. Velikhov, Phys. Fluids 18, 124107 (2006).

    Google Scholar 

  5. S. A. Balbus, Astrophys. J. 616, 857 (2004).

    Article  ADS  Google Scholar 

  6. G. Rudiger, M. Schultz, and D. Shalybkov, Phys. Rev. E67, 046312 (2003).

  7. G. I. Budker, Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Pergamon, Oxford, 1961), Vol. 1, p. 145.

    Google Scholar 

  8. A. Schluter, Z. Naturforsch A12, 822 (1957).

    ADS  MathSciNet  Google Scholar 

  9. S. I. Braginskii, Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, N.Y., 1965), Vol. 1, p. 205.

    Google Scholar 

  10. V. S. Tsypin, Zh. Tekh. Fiz. 42, 727 (1972) [Sov. Phys.-Tech. Phys. 17, 543 (1972)].

    Google Scholar 

  11. A. B. Mikhailovskii, Electromagnetic Instabilities in an Inhomogeneous Plasma (Institute of Physics, Bristol, 1992).

    Google Scholar 

  12. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Zh. Éksp. Teor. Fiz. 133, 183 (2008) [JETP 106, 154 (2008)].

    Google Scholar 

  13. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Zh. Éksp. Teor. Fiz. 133, 429 (2008) [JETP 106, 371 (2008)].

    Google Scholar 

  14. E. Frieman and N. Rotenberg, Rev. Mod. Phys. 32, 898 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. E. Hameiri, J. Math. Phys. 22, 2080 (1981).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. A. Bondeson, R. Iacono, and A. Bhattacharjee, Phys. Fluids 30, 2167 (1987).

    Article  MATH  ADS  Google Scholar 

  17. A. B. Mikhailovskii, J. G. Lominadze, R. M. Galvao, et al., Fiz. Plazmy 34, 589 (2008) [Plasma Phys. Rep. 34, 538 (2008)].

    Google Scholar 

  18. A. B. Mikhailovskii, J. G. Lominadze, R. M. Galvao, et al., Phys. Plasmas 14, 112101 (2007).

    Google Scholar 

  19. A. B. Mikhailovskii, J. G. Lominadze, R. M. Galvao, et al., Phys. Plasmas 15, 052103 (2008).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987).

    MATH  Google Scholar 

  21. M. Tagg, Nonlin. Sci. Today 4, 1 (1994).

    Google Scholar 

  22. J. W. S. Blokland, E. van der Swaluw, R. Keppens, et al., Astron. Astrophys. 444, 337 (2005).

    Article  MATH  ADS  Google Scholar 

  23. A. B. Mikhailovskii, Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, N.Y., 1975), Vol. 6, p. 77.

    Google Scholar 

  24. H. Ji, J. Goodman, and A. Kageyama, Mon. Not. R. Astron. Soc. 325, L1 (2001).

    Article  ADS  Google Scholar 

  25. G. Rudiger and Y. Zhang, Astron. Astrophys. 378, 302 (2001).

    Article  ADS  Google Scholar 

  26. J. Goodman and H. Ji, J. Fluid Mech. 462, 365 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. K. Noguchi, V. I. Pariev, S. A. Colgate, et al., Astrophys. J. 575, 1151 (2002).

    Article  ADS  Google Scholar 

  28. M. Kruskal and M. Schwartzschild, Proc. Roy. Soc. A 233, 348 (1954).

    Article  ADS  Google Scholar 

  29. A. B. Mikhailovskii, J. G. Lominadze, R. M. O. Galvao, et al., Phys. Plasmas 15, 052109 (2008).

    Google Scholar 

  30. J. H. Krolik and E. G. Zweibel, Astrophys. J. 644, 651 (2006).

    Article  ADS  Google Scholar 

  31. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Phys. Lett. A 372, 49 (2007).

    Article  ADS  Google Scholar 

  32. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, et al., Fiz. Plazmy 34, 736 (2008) [Plasma Phys. Rep. 34, 678 (2008)].

    Google Scholar 

  33. E. P. Velikhov, A. A. Ivanov, V. P. Lakhin, et al., Phys. Lett. A 356, 357 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Fizika Plazmy, 2008, Vol. 34, No. 10, pp. 908–917.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailovskii, A.B., Lominadze, J.G., Churikov, A.P. et al. Axisymmetric magnetorotational instability in ideal and viscous laboratory plasmas. Plasma Phys. Rep. 34, 837–846 (2008). https://doi.org/10.1134/S1063780X08100048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X08100048

PACS numbers

Navigation