Skip to main content
Log in

High-frequency surface waves at a plasma-metal interface: I. Linear model

  • Plasma Oscillations and Waves
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A study is made of the dispersion properties of surface waves at a plasma-metal interface under thermodynamically nonequilibrium conditions such that a space charge sheath forms at the plasma boundary. In the simplest model, the sheath is described as a dielectric with a given permittivity. The wave parameters in a highly collisional plasma are discussed. The effect of interaction between waves propagating near the opposite plasma boundaries is considered, in particular, for space charge sheaths of different thicknesses. Conditions are determined under which the parameters of surface waves are substantially altered by the plasma-sheath geometric resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959).

    Article  ADS  Google Scholar 

  2. A. W. Trivelpiece, Slow Wave Propagation in Plasma Waveguides (San Francisco Press, San Francisco, CA, 1967).

    Google Scholar 

  3. A. N. Kondratenko, Surface Waves (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  4. A. N. Kondratenko, Surface and Bulk Waves in Bounded Plasmas (Énergoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  5. Ya. B. Fainberg, in Proceedings of the CERN Symposium on High-Energy Accelerators and Pion Physics, Geneva, 1956, Ed. by E. Regenstreif (CERN, Geneva, 1956), Vol. 1, p. 84.

    Google Scholar 

  6. K. N. Stepanov, Zh. Tekh. Fiz. 35, 1002 (1965) [Sov. Phys. Tech. Phys. 10, 773 (1965)].

    Google Scholar 

  7. A. N. Kondratenko, Yad. Sintez 5, 267 (1965).

    Google Scholar 

  8. V. I. Miroshnichenko, Zh. Tekh. Fiz. 36, 1008 (1966) [Sov. Phys. Tech. Phys. 11, 744 (1966)].

    Google Scholar 

  9. E. E. Lovetsky, Nucl. Fusion 13, 331 (1973).

    Google Scholar 

  10. M. Moisan, Z. Zakrzewski, R. Pantel, and P. Leprince, IEEE Trans. Plasma Sci. 12, 203 (1984).

    Article  ADS  Google Scholar 

  11. M. Moisan, United States Patent No. 4906898, March 6, 1990 (http://www.freepatentsonline.com/4906898.html).

  12. N. A. Azarenkov, I. B. Denisenko, and K. N. Ostrikov, J. Plasma Phys. 50, 369 (1993).

    Article  ADS  Google Scholar 

  13. N. A. Azarenkov, A. N. Kondratenko, and K. N. Ostrikov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 36, 335 (1993) [Radiophys. Quant. Electron. 36, 213 (1993)].

    Google Scholar 

  14. N. A. Azarenkov and K. N. Ostrikov, Phys. Rep. 308, 333 (1999).

    Article  ADS  Google Scholar 

  15. M. P. Bachinski, RCA Rev. 28, 111 (1967).

    Google Scholar 

  16. M. L. Schiff and J. A. Fejer, Radio Sci. 5, 811 (1970).

    Article  ADS  Google Scholar 

  17. E. K. Miller, Radio Sci. 3, 1175 (1968).

    ADS  Google Scholar 

  18. T. A. Hall and G. Landauer, Radio Sci. 6, 867 (1971).

    Article  Google Scholar 

  19. S. R. Sesadri, Proc IEEE 112, 877 (1965).

    Google Scholar 

  20. P. Meyer, N. Vernet, and P. Lassudrie-Duchesne, J. Appl. Phys. 45, 700 (1974).

    Article  ADS  Google Scholar 

  21. I. Langmuir and H. M. Mott-Smith, Phys. Rev. 28, 272 (1926).

    Google Scholar 

  22. P. M. Chung, L. Talbot, and K. J. Touryan, Electric Probes in Stationary and Flowing Plasmas (Springer-Verlag, New York, 1975; Mir, Moscow, 1978).

    Google Scholar 

  23. J. G. Laframboise and J. Rubinstein, Phys. Fluids 19, 1900 (1976).

    Article  ADS  Google Scholar 

  24. J. G. Laframboise, Report No. 100 (Institute for Aerospace Studies, University of Toronto, Toronto, 1966).

  25. J.-J. Laurin, G. A. Morin, and K. J. Balman, Radio Sci. 24, 289 (1989).

    Article  ADS  Google Scholar 

  26. D. J. Cooperberg, Phys. Plasmas 5, 853 (1998).

    Article  ADS  Google Scholar 

  27. D. J. Cooperberg, Phys. Plasmas 5, 862 (1998).

    Article  ADS  Google Scholar 

  28. D. J. Cooperberg and C. K. Birdsall, Plasma Sources Sci. Technol. 7, 41 (1998).

    Article  ADS  Google Scholar 

  29. D. J. Cooperberg and C. K. Birdsall, Plasma Sources Sci. Technol. 7, 96 (1998).

    Article  ADS  Google Scholar 

  30. J. Taillet, Am. J. Phys. 37, 423 (1969).

    Article  ADS  Google Scholar 

  31. J. Taillet, J. Phys. (France) 40, C7–159 (1979).

    Google Scholar 

  32. V. A. Godyak and A. A. Kuzovnikov, Fiz. Plazmy 1, 496 (1975) [Sov. J. Plasma Phys. 1, 276 (1975)].

    Google Scholar 

  33. V. A. Godyak, Fiz. Plazmy 2, 141 (1976) [Sov. J. Plasma Phys. 2, 78 (1976)].

    Google Scholar 

  34. K. S. Sollins, S. A. Roderisk, S.-L. Yang, et al., United States Patent No. 5210466, May 11, 1993 (http://www.freepatentsonline.com/5210466.html).

  35. M. A. Liberman, J. P. Booth, P. Chabett, et al., Plasma Sources Sci. Technol. 11, 283 (2002).

    Article  ADS  Google Scholar 

  36. R. Buckley, Proc. Roy. Soc. A 290, 186 (1966).

    Article  ADS  Google Scholar 

  37. J. Robiche, P. C. Boyle, M. M. Turner, et al., J. Phys D 36, 1810 (2003).

    Article  ADS  Google Scholar 

  38. A. S. Kovalev, E. A. Muratov, A. A. Ozerenko, et al., Fiz. Plazmy 11, 882 (1985) [Sov. J. Plasma Phys. 11, 515 (1985)].

    Google Scholar 

  39. M. A. Lieberman, IEEE Trans. Plasma Sci. 16, 638 (1988).

    Article  ADS  Google Scholar 

  40. M. A. Lieberman, IEEE Trans. Plasma Sci. 17, 338 (1989).

    Article  ADS  Google Scholar 

  41. V. Godyak and N. Sternberg, Phys. Rev. A 42, 2299 (1990).

    Article  ADS  Google Scholar 

  42. N. A. Azarenkov, I. B. Denisenko, A. V. Gapon, and T. W. Dohnston, Phys. Plasmas 8, 1467 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  43. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  44. P. K. Cibin, Plasma Phys. 22, 609 (1980).

    Article  ADS  Google Scholar 

  45. S. A. Dvinin, V. M. Shibkov, and V. V. Mikheev, Fiz. Plazmy 32, 654 (2006) [Plasma Phys. Rep. 32, 601 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Dvinin, A.G. Vologirov, V.V. Mikheev, V.S. Sviridkina, 2008, published in Fizika Plazmy, 2008, Vol. 34, No. 8, pp. 746–755.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvinin, S.A., Vologirov, A.G., Mikheev, V.V. et al. High-frequency surface waves at a plasma-metal interface: I. Linear model. Plasma Phys. Rep. 34, 688–697 (2008). https://doi.org/10.1134/S1063780X08080072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X08080072

PACS numbers

Navigation