Skip to main content
Log in

Study of plasma heating in discharges with neutral beam injection in the Globus-M spherical tokamak

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results from experimental studies on the injection of high-energy neutral hydrogen beams into the plasma of the Globus-M spherical tokamak are reviewed. In the Introduction, the importance of these studies for implementing the controlled fusion research program and constructing the ITER tokamak is proved. Some problems related to the use of neutral beam injection in small and low-aspect-ratio tokamaks is analyzed. Results are presented from numerical simulations of the experiment by using the ASTRA transport code. It is shown that the use of neutral beam injection in the Globus-M tokamak ensures efficient ion heating and increases the plasma stored energy. The greater part of the review is devoted to the survey of experiments on the injection of 22-to 30-keV hydrogen and deuterium beams with a power of 0.4–0.8 MW into the plasma of the Globus-M spherical tokamak in a wide range of plasma currents and densities. The experimental results are analyzed and compared with the results of numerical simulations. The achievement of top plasma parameters is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ikeda, in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper FPM/1.

  2. ITER Technical Basis, ITER EDA Documentation Series No. 24 (IAEA, Vienna, 2002).

    Google Scholar 

  3. N. Holtkamp, Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper IT/1-1.

  4. R. D. Stambaugh, in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper IT/1-2.

  5. Y.-K. M. Peng and D. J. Strickler, Nucl. Fusion 26, 769 (1986).

    Article  Google Scholar 

  6. D. C. Robinson, in Fusion Energy and Plasma Physics, Ed. by P. H. Sakanaka (World Scientific, Singapore, 1987), p. 601.

    Google Scholar 

  7. A. Sykes, Zh. Tekh. Fiz. 69(9), 50 (1999) [Tech. Phys. 44, 1047 (1999)].

    Google Scholar 

  8. L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1962; Inostrannaya Literatura, Moscow, 1957).

    Google Scholar 

  9. M. D. Kruskal and M. Schwarzschild, Proc. R. Soc. London A 233, 348 (1954).

    MathSciNet  ADS  Google Scholar 

  10. V. D. Shafranov, At. Énerg. 5, 38 (1956).

    Google Scholar 

  11. L. E. Zakharov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich and B. B. Kadomtsev (Atomizdat, Moscow, 1982; Consultants Bureau, New York, 1986), Vol. 11.

    Google Scholar 

  12. S. Yu. Medvedev, T. C. Hender, O. Sauter, and L. Villard, in Proceedings of the 28th EPS Conference on Controlled Fusion and Plasma Physics, Funchal, 2001, ECA 25A, OR–06 (2001).

    Google Scholar 

  13. A. Sykes, E. Del Bosco, R. J. Colchin, et al., Nucl. Fusion 32, 694 (1992).

    Article  ADS  Google Scholar 

  14. M. P. Gryaznevich, R. Akers, P. G. Carolan, et al., Phys. Rev. Lett. 50, 3972 (1998).

    Article  ADS  Google Scholar 

  15. ITER Physics Basis Editors, ITER Physics Expert Group Chairs and Co-Chairs, and ITER Joint Central Team and Physics Integration Unit, Nucl. Fusion 39, 2137 (1999).

    Article  ADS  Google Scholar 

  16. M. Cox and MAST Team, Fusion Eng. Design 46, 397 (1999).

    Article  Google Scholar 

  17. M. Ono, S. M. Kaye, Y.-K. M. Peng, et al., Nucl. Fusion 40, 557 (2000).

    Article  ADS  Google Scholar 

  18. V. K. Gusev, V. E. Golant, E. Z. Gusakov, et al., Zh. Tekh. Fiz. 69(9), 58 (1999) [Tech. Phys. 44, 1054 (1999)].

    Google Scholar 

  19. V. K. Gusev, A. V. Dech and L. A. Esipov, et al., Zh. Tekh. Fiz. 77(9), 28 (2007) [Tech. Phys. 52, 1127 (2007)].

    Google Scholar 

  20. A. C. Riviere, Nucl. Fusion 11, 363 (1971).

    Article  Google Scholar 

  21. B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.

    Google Scholar 

  22. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.

    Google Scholar 

  23. J. G. Cordey and M. J. Houghton, Nucl. Fusion 13, 215 (1973).

    Article  Google Scholar 

  24. J. W. Connor and J. G. Cordey, Nucl. Fusion 14, 185 (1974).

    Article  Google Scholar 

  25. V. V. Fomenko, Nucl. Fusion 15, 1091 (1975).

    Article  ADS  Google Scholar 

  26. V. I. Pistunovich, Fiz. Plazmy 2, 3 (1976) [Sov. J. Plasma Phys. 2, 1 (1976)].

    Google Scholar 

  27. J. G. Cordey and W. G. F. Core, Phys. Fluids 17, 1626 (1974).

    Article  ADS  Google Scholar 

  28. W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535 (1994).

    Article  ADS  Google Scholar 

  29. G. V. Pereverzev and P. N. Yushmanov, Preprint No. 5/98 (Max-Plank Institute for Plasma Physics, Garching, 2002).

    Google Scholar 

  30. A. R. Polevoi, T. Takizuka, and H. Shirai, Report No. 97-014 (JAERI, Naka, 1997).

    Google Scholar 

  31. O. N. Shcherbinin, F. V. Chernyshev, V. V. Dyachenko, et al., Nucl. Fusion 46, S592 (2006).

    Article  ADS  Google Scholar 

  32. L. G. Askinazi, A. G. Barsukov, V. E. Golant, et al., Plasma Dev. Operat. 11, 211 (2003).

    Article  Google Scholar 

  33. V. V. Bulanin, I. N. Chugunov, and M. I. Vildzunas, Plasma Dev. Operat. 9, 129 (2001).

    Article  Google Scholar 

  34. V. K. Gusev, S. E. Bender, A. V. Dech, et al., Zh. Tekh. Fiz. 76(8), 25 (2006) [Tech. Phys. 51, 987 (2006)].

    Google Scholar 

  35. V. I. Vasiliev, Yu. A. Kostsov, K. M. Lobanov, et al., Nucl. Fusion 46, S625 (2006).

    Article  ADS  Google Scholar 

  36. S. Yu. Tolstyakov, V. K. Gusev, M. M. Kochergin, et al., Zh. Tekh. Fiz. 76(7), 27 (2006) [Tech. Phys. 51, 846 (2006)].

    Google Scholar 

  37. A. B. Izvozchikov, M. P. Petrov, S. Ya. Petrov, et al., Zh. Tekh. Fiz. 62(2), 157 (1992) [Sov. Phys. Tech. Phys. 37, 201 (1992)].

    Google Scholar 

  38. F. V. Tchernychev, Y. Kusama, M. Nemoto, et al., Plasma Phys. Controlled Fusion 41, 1291 (1999).

    Article  ADS  Google Scholar 

  39. V. B. Minaev, B. B. Ayushin, A. G. Barsukov, et al., in Proceedings of the 33rd EPS Plasma Physics Conference, Roma, 2006, ECA 30I, P–4.104 (2006).

    Google Scholar 

  40. V. B. Minaev, B. B. Ayushin, A. G. Barsukov, et al., in Proceedings of the 32nd EPS Plasma Physics Conference, Tarragona, 2005, ECA 29C, P–1.103 (2005).

    Google Scholar 

  41. V. K. Gusev, F. V. Chernyshev, V. E. Golant, et al., Nucl. Fusion 46, S584 (2006).

    Article  ADS  Google Scholar 

  42. V. K. Gusev, S. Yu. Tolstyakov, V. I. Varfolomeev, et al., Vopr. At. Nauki Tekh., Ser. Termoyadernyĭ Sintez, No. 1, 39 (2007).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.B. Ayushin, A.G. Barsukov, V.K. Gusev, L.A. Esipov, E.G. Zhilin, G.S. Kurskiev, R.G. Levin, V.M. Leonov, V.B. Minaev, M.I. Patrov, Yu.V. Petrov, N.V. Sakharov, G.N. Tilinin, S.Yu. Tolstyakov, F.V. Chernyshev, 2008, published in Fizika Plazmy, 2008, Vol. 34, No. 2, pp. 99–113.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayushin, B.B., Barsukov, A.G., Gusev, V.K. et al. Study of plasma heating in discharges with neutral beam injection in the Globus-M spherical tokamak. Plasma Phys. Rep. 34, 81–94 (2008). https://doi.org/10.1134/S1063780X08020013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X08020013

PACS numbers

Navigation