Advertisement

Plasma Physics Reports

, Volume 34, Issue 2, pp 81–94 | Cite as

Study of plasma heating in discharges with neutral beam injection in the Globus-M spherical tokamak

  • B. B. Ayushin
  • A. G. Barsukov
  • V. K. Gusev
  • L. A. Esipov
  • E. G. Zhilin
  • G. S. Kurskiev
  • R. G. Levin
  • V. M. Leonov
  • V. B. Minaev
  • M. I. Patrov
  • Yu. V. Petrov
  • N. V. Sakharov
  • G. N. Tilinin
  • S. Yu. Tolstyakov
  • F. V. Chernyshev
Tokamaks

Abstract

Results from experimental studies on the injection of high-energy neutral hydrogen beams into the plasma of the Globus-M spherical tokamak are reviewed. In the Introduction, the importance of these studies for implementing the controlled fusion research program and constructing the ITER tokamak is proved. Some problems related to the use of neutral beam injection in small and low-aspect-ratio tokamaks is analyzed. Results are presented from numerical simulations of the experiment by using the ASTRA transport code. It is shown that the use of neutral beam injection in the Globus-M tokamak ensures efficient ion heating and increases the plasma stored energy. The greater part of the review is devoted to the survey of experiments on the injection of 22-to 30-keV hydrogen and deuterium beams with a power of 0.4–0.8 MW into the plasma of the Globus-M spherical tokamak in a wide range of plasma currents and densities. The experimental results are analyzed and compared with the results of numerical simulations. The achievement of top plasma parameters is highlighted.

PACS numbers

52.50.Gj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ikeda, in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper FPM/1.Google Scholar
  2. 2.
    ITER Technical Basis, ITER EDA Documentation Series No. 24 (IAEA, Vienna, 2002).Google Scholar
  3. 3.
    N. Holtkamp, Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper IT/1-1.Google Scholar
  4. 4.
    R. D. Stambaugh, in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper IT/1-2.Google Scholar
  5. 5.
    Y.-K. M. Peng and D. J. Strickler, Nucl. Fusion 26, 769 (1986).CrossRefGoogle Scholar
  6. 6.
    D. C. Robinson, in Fusion Energy and Plasma Physics, Ed. by P. H. Sakanaka (World Scientific, Singapore, 1987), p. 601.Google Scholar
  7. 7.
    A. Sykes, Zh. Tekh. Fiz. 69(9), 50 (1999) [Tech. Phys. 44, 1047 (1999)].Google Scholar
  8. 8.
    L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1962; Inostrannaya Literatura, Moscow, 1957).Google Scholar
  9. 9.
    M. D. Kruskal and M. Schwarzschild, Proc. R. Soc. London A 233, 348 (1954).MathSciNetADSGoogle Scholar
  10. 10.
    V. D. Shafranov, At. Énerg. 5, 38 (1956).Google Scholar
  11. 11.
    L. E. Zakharov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich and B. B. Kadomtsev (Atomizdat, Moscow, 1982; Consultants Bureau, New York, 1986), Vol. 11.Google Scholar
  12. 12.
    S. Yu. Medvedev, T. C. Hender, O. Sauter, and L. Villard, in Proceedings of the 28th EPS Conference on Controlled Fusion and Plasma Physics, Funchal, 2001, ECA 25A, OR–06 (2001).Google Scholar
  13. 13.
    A. Sykes, E. Del Bosco, R. J. Colchin, et al., Nucl. Fusion 32, 694 (1992).CrossRefADSGoogle Scholar
  14. 14.
    M. P. Gryaznevich, R. Akers, P. G. Carolan, et al., Phys. Rev. Lett. 50, 3972 (1998).CrossRefADSGoogle Scholar
  15. 15.
    ITER Physics Basis Editors, ITER Physics Expert Group Chairs and Co-Chairs, and ITER Joint Central Team and Physics Integration Unit, Nucl. Fusion 39, 2137 (1999).CrossRefADSGoogle Scholar
  16. 16.
    M. Cox and MAST Team, Fusion Eng. Design 46, 397 (1999).CrossRefGoogle Scholar
  17. 17.
    M. Ono, S. M. Kaye, Y.-K. M. Peng, et al., Nucl. Fusion 40, 557 (2000).CrossRefADSGoogle Scholar
  18. 18.
    V. K. Gusev, V. E. Golant, E. Z. Gusakov, et al., Zh. Tekh. Fiz. 69(9), 58 (1999) [Tech. Phys. 44, 1054 (1999)].Google Scholar
  19. 19.
    V. K. Gusev, A. V. Dech and L. A. Esipov, et al., Zh. Tekh. Fiz. 77(9), 28 (2007) [Tech. Phys. 52, 1127 (2007)].Google Scholar
  20. 20.
    A. C. Riviere, Nucl. Fusion 11, 363 (1971).CrossRefGoogle Scholar
  21. 21.
    B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.Google Scholar
  22. 22.
    D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.Google Scholar
  23. 23.
    J. G. Cordey and M. J. Houghton, Nucl. Fusion 13, 215 (1973).CrossRefGoogle Scholar
  24. 24.
    J. W. Connor and J. G. Cordey, Nucl. Fusion 14, 185 (1974).CrossRefGoogle Scholar
  25. 25.
    V. V. Fomenko, Nucl. Fusion 15, 1091 (1975).CrossRefADSGoogle Scholar
  26. 26.
    V. I. Pistunovich, Fiz. Plazmy 2, 3 (1976) [Sov. J. Plasma Phys. 2, 1 (1976)].Google Scholar
  27. 27.
    J. G. Cordey and W. G. F. Core, Phys. Fluids 17, 1626 (1974).CrossRefADSGoogle Scholar
  28. 28.
    W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535 (1994).CrossRefADSGoogle Scholar
  29. 29.
    G. V. Pereverzev and P. N. Yushmanov, Preprint No. 5/98 (Max-Plank Institute for Plasma Physics, Garching, 2002).Google Scholar
  30. 30.
    A. R. Polevoi, T. Takizuka, and H. Shirai, Report No. 97-014 (JAERI, Naka, 1997).Google Scholar
  31. 31.
    O. N. Shcherbinin, F. V. Chernyshev, V. V. Dyachenko, et al., Nucl. Fusion 46, S592 (2006).CrossRefADSGoogle Scholar
  32. 32.
    L. G. Askinazi, A. G. Barsukov, V. E. Golant, et al., Plasma Dev. Operat. 11, 211 (2003).CrossRefGoogle Scholar
  33. 33.
    V. V. Bulanin, I. N. Chugunov, and M. I. Vildzunas, Plasma Dev. Operat. 9, 129 (2001).CrossRefGoogle Scholar
  34. 34.
    V. K. Gusev, S. E. Bender, A. V. Dech, et al., Zh. Tekh. Fiz. 76(8), 25 (2006) [Tech. Phys. 51, 987 (2006)].Google Scholar
  35. 35.
    V. I. Vasiliev, Yu. A. Kostsov, K. M. Lobanov, et al., Nucl. Fusion 46, S625 (2006).CrossRefADSGoogle Scholar
  36. 36.
    S. Yu. Tolstyakov, V. K. Gusev, M. M. Kochergin, et al., Zh. Tekh. Fiz. 76(7), 27 (2006) [Tech. Phys. 51, 846 (2006)].Google Scholar
  37. 37.
    A. B. Izvozchikov, M. P. Petrov, S. Ya. Petrov, et al., Zh. Tekh. Fiz. 62(2), 157 (1992) [Sov. Phys. Tech. Phys. 37, 201 (1992)].Google Scholar
  38. 38.
    F. V. Tchernychev, Y. Kusama, M. Nemoto, et al., Plasma Phys. Controlled Fusion 41, 1291 (1999).CrossRefADSGoogle Scholar
  39. 39.
    V. B. Minaev, B. B. Ayushin, A. G. Barsukov, et al., in Proceedings of the 33rd EPS Plasma Physics Conference, Roma, 2006, ECA 30I, P–4.104 (2006).Google Scholar
  40. 40.
    V. B. Minaev, B. B. Ayushin, A. G. Barsukov, et al., in Proceedings of the 32nd EPS Plasma Physics Conference, Tarragona, 2005, ECA 29C, P–1.103 (2005).Google Scholar
  41. 41.
    V. K. Gusev, F. V. Chernyshev, V. E. Golant, et al., Nucl. Fusion 46, S584 (2006).CrossRefADSGoogle Scholar
  42. 42.
    V. K. Gusev, S. Yu. Tolstyakov, V. I. Varfolomeev, et al., Vopr. At. Nauki Tekh., Ser. Termoyadernyĭ Sintez, No. 1, 39 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • B. B. Ayushin
    • 1
  • A. G. Barsukov
    • 2
  • V. K. Gusev
    • 1
  • L. A. Esipov
    • 1
  • E. G. Zhilin
    • 3
  • G. S. Kurskiev
    • 1
  • R. G. Levin
    • 1
  • V. M. Leonov
    • 2
  • V. B. Minaev
    • 1
  • M. I. Patrov
    • 1
  • Yu. V. Petrov
    • 1
  • N. V. Sakharov
    • 1
  • G. N. Tilinin
    • 2
  • S. Yu. Tolstyakov
    • 1
  • F. V. Chernyshev
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Nuclear Fusion InstituteRussian Research Centre Kurchatov InstituteMoscowRussia
  3. 3.Ioffe Fusion Technology Ltd.St. PetersburgRussia

Personalised recommendations