Skip to main content
Log in

First Heat and Particles Transport Study in the Globus-M2 Spherical Tokamak with Neutral Beam Injection at the Current Ramp-Up

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The article presents the results of studying the transfer of heat and particles in the Globus-M2 spherical tokamak in discharges with neutral injection at the current ramp up. An atomic beam was injected into the tokamak plasma at a fixed toroidal magnetic field of 0.7 T. The plasma current on the plateau was varied in the range 0.2–0.3 MA. Based on the electron temperature and concentration spatial distributions measured by the Thomson scattering method, the transport of heat and particles in plasma was simulated using the ASTRA code. The energy confinement time of the plasma was determined, as well as estimates of the coefficients of thermal diffusivity and diffusion was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. S. Taylor, Plasma Phys. Controlled Fusion 39, B47 (1997). https://doi.org/10.1088/0741-3335/39/12B/005

    Article  Google Scholar 

  2. F. Turco, C. C. Petty, T. C. Luce, T. N. Carlstrom, M. A. Van Zeeland, W. Heidbrink, F. Carpanese, W. Solomon, C. T. Holcomb, and J. R. Ferron, Phys. Plasmas 22, 056113 (2015). https://doi.org/10.1063/1.4921161

    Article  ADS  Google Scholar 

  3. A. Y. Dnestrovskij, A. S. Kukushkin, B. V. Kuteev, and V. Y. Sergeev, Nucl. Fusion 55, 063007 (2015). https://doi.org/10.1088/0029-5515/55/6/063007

    Article  ADS  Google Scholar 

  4. V. Igochine, Nucl. Fusion 52, 074010 (2012). https://doi.org/10.1088/0029-5515/52/7/074010

    Article  ADS  Google Scholar 

  5. A. Sykes, the START Team, the NBI Team, the MAST Team, and the Theory Team, Nucl. Fusion 39, 1271 (1999). https://doi.org/10.1088/0029-5515/39/9Y/305

    Article  ADS  Google Scholar 

  6. S. A. Sabbagh, J.-W. Ahn, J. Allain, R. Andre, A. Balbaky, R. Bastasz, D. Battaglia, M. Bell, R. Bell, P. Beiersdorfer, E. Belova, J. Berkery, R. Betti, J. Bialek, T. Bigelow, et al., Nucl. Fusion 53, 104007 (2013). https://doi.org/10.1088/0029-5515/53/10/104007

    Article  ADS  Google Scholar 

  7. ITER Physics Basics, Nucl. Fusion 39, 2175 (1999). https://doi.org/10.1088/0029-5515/47/6/S02

    Article  ADS  Google Scholar 

  8. S. P. Gerhardt, D.A. Gates, S. M. Kaye, R. Maingi, J. E. Menard, S. A. Sabbagh, V. Soukhanovskii, M. G. Bell, R. E. Bell, J. M. Canik, E. Fredrickson, R. Kaita, E. Kolemen, H. Kugel, B. P. Le Blanc, et al., Nucl. Fusion 51, 073031 (2011). https://doi.org/10.1088/0029-5515/51/7/073031

    Article  ADS  Google Scholar 

  9. V. K. Gusev, V. E. Golant, E. Z. Gusakov, V. V. D’yachenko, M. A. Irzak, V. B. Minaev, E. E. Mukhin, A. N. Novokhatskii, K. A. Podushnikova, G. T. Razdobarin, N. V. Sakharov, E. N. Tregubova, V. S. Uzlov, O. N. Shcherbinin, V. A. Belyakov, et al., Tech. Phys. 44 (9), 1054 (1999). https://doi.org/10.1134/1.1259469

    Article  Google Scholar 

  10. N. N. Bakharev, G. I. Abdullina, V. I. Afanasyev, A. B. Altukhov, L. G. Askinazi, N. A. Babinov, A. N. Bazhenov, A. A. Belokurov, M. D. Blekhshtein, E. N. Bondarchuk, I. M. Bukreev, V.V. Bulanin, An. P. Chernakov, F. V. Chernyshev, I. N. Chugunov, et al., Nucl. Fusion 59, 112022 (2019). https://doi.org/10.1088/1741-4326/ab22dc

    Article  ADS  Google Scholar 

  11. N. N. Bakharev, V. V. Bulanin, F. V. Chernyshev, V. K. Gusev, N. A. Khromov, E. O. Kiselev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, I. V. Miroshnikov, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, et al., Nucl. Fusion 58, 126029 (2018). https://doi.org/10.1088/1741-4326/aae60d

    Article  ADS  Google Scholar 

  12. G. S. Kurskiev, V. K. Gusev, S. Yu. Tolstyakov, A. A. Berezutskii, V. V. Bulanin, V. I. Varfolomeev, M. M. Kochergin, V. B. Minaev, E. E. Mukhin, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, V. V. Semenov, A. Yu. Yashin, et al., Tech. Phys. Lett. 37 (12), 1127 (2011). https://doi.org/10.1134/S106378501112008X

    Article  Google Scholar 

  13. A. Yu. Telnova, G. S. Kurskiev, E. O. Kiselev, N. N. Bakharev, V. K. Gusev, N. A. Khromov, S. Yu. Medvedev, V. B. Minaev, I. V. Miroshnikov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, A. D. Sladkomedova, P. B. Shchegolev, V. V. Solokha, et al., Plasma Sci. Technol. 21, 115101 (2019). https://doi.org/10.1088/2058-6272/ab2ff6

    Article  ADS  Google Scholar 

  14. A. Yu. Tel’nova, G. S. Kurskiev, N. N. Bakharev, V. K. Gusev, E. O. Kiselev, V. B. Minaev, I. V. Miroshnikov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, V. A. Tokarev, S. Yu. Tolstyakov, E. A. Tukhmeneva, N. A. Khromov, and P. B. Shchegolev, Tech. Phys. Lett. 45 (7), 653 (2019). https://doi.org/10.1134/S1063785019070125

    Article  ADS  Google Scholar 

  15. V. K. Gusev, E. A. Azizov, A. B. Alekseev, A. F. Arneman, N. N. Bakharev, V. A. Belyakov, S. E. Bender, E. N. Bondarchuk, V. V. Bulanin, A. S. Bykov, F. V. Chernyshev, I. N. Chugunov, V. V. Dyachenko, O. G. Filatov, A. D. Iblyaminova, et al., Nucl. Fusion 53, 093013 (2013). https://doi.org/10.1088/0029-5515/53/9/093013

    Article  ADS  Google Scholar 

  16. V. K. Gusev, N. N. Bakharev, V. A. Belyakov, B. Ya. Ber, E. N. Bondarchuk, V. V. Bulanin, A. S. Bykov, F. V. Chernyshev, E. V. Demina, V. V. Dyachenko, P. R. Goncharov, A. E. Gorodetsky, E. Z. Gusakov, A. D. Iblyaminova, A. A. Ivanov, et al., Nucl. Fusion 55, 104016 (2015). https://doi.org/10.1088/0029-5515/55/10/104016

    Article  ADS  Google Scholar 

  17. V. B. Minaev, V. K. Gusev, N. V. Sakharov, V. I. Varfolomeev, N. N. Bakharev, V. A. Belyakov, E. N. Bondarchuk, P. N. Brunkov, F. V. Chernyshev, V. I. Davydenko, V. V. Dyachenko, A. A. Kavin, S. A. Khitrov, N. A. Khromov, E. O. Kiselev, et al., Nucl. Fusion 57, 066047 (2017). https://doi.org/10.1088/1741-4326/aa69e0

    Article  ADS  Google Scholar 

  18. N. N. Bakharev, I. M. Balachenkov, V. I. Varfolomeev, A. V. Voronin, V. K. Gusev, V. V. Dyachenko, M.  V.  Ilyasova, E. O. Kiselev, A. N. Konovalov, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, I. V. Miroshnikov, A. N. Novokhatsky, M. I. Patrov, et al., Plasma Phys. Rep. 46 (7), 675 (2020). https://doi.org/10.1134/S1063780X20070016

    Article  ADS  Google Scholar 

  19. G. S. Kurskiev, S. Yu. Tolstyakov, A. A. Berezutskiy, V.   K. Gusev, M. M. Kochergin, V. B. Minaev, E. E. Mukhin, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, V. V. Semenov, and P. V. Chernakov, Vopr. At. Nauki Tekh. Ser. Termoyader. Sintez, No. 2, 81 (2012). http://vant.iterru.ru/vant_2012_2/7.pdf

  20. G. V. Pereverzev and P. N. Yushmanov, IPP Report No. 5/98 (Max-Plank Inst., 2002). https://w3.pppl.gov/hammett/work/2009/Astra_ocr.pdf

  21. F. Porcelli, D. Boucher, and M. N. Rosenbluth, Plasma Phys. Controlled Fusion 38, 2163 (1996). https://doi.org/10.1088/0741-3335/38/12/010

    Article  ADS  Google Scholar 

  22. N. N. Bakharev, F. V. Chernyshev, P. R. Goncharov, V.   K. Gusev, A. D. Iblyaminova, V. A. Kornev, G. S.   Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, S. Yu. Tolstyakov, et al., Nucl. Fusion 55, 043023 (2015). https://doi.org/10.1088/0029-5515/55/4/043023

    Article  ADS  Google Scholar 

  23. G. S. Kurskiev, N. V. Sakharov, P. B. Schegolev, N.  N.  Bakharev, E. O. Kiselev, G. F. Avdeeva, V. K. Gusev, A. D. Iblyaminova, V. B. Minaev, I.  V.  Miroshnikov, M. I. Patrov, Yu. V. Petrov, A. Yu. Telnova, S. Yu. Tolstyakov, and V. A. Tokarev, Vopr. At. Nauki Tekh. Ser. Termoyader. Sintez 39 (4), 86 (2016). http://vant.iterru.ru/vant_2016_4/8.pdf

  24. A. Yu. Telnova, V. B. Minaev, P. B. Shchegolev, N. N. Bakharev, V. K. Gusev, G. S Kurskiev, Yu. V. Petrov, and N. V. Sakharov, J. Phys.: Conf. Ser. 907, 012014 (2017). https://doi.org/10.1088/1742-6596/907/1/012014

    Article  Google Scholar 

  25. G. S. Kurskiev, N. N. Bakharev, V. V. Bulanin, F.  V.  Chernyshev, V. K. Gusev, N. A. Khromov, E.  O.  Kiselev, V. B. Minaev, I. V. Miroshnikov, E. E. Mukhin, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, et al., Nucl. Fusion 59, 066032 (2019). https://doi.org/10.1088/1741-4326/ab15c5

    Article  ADS  Google Scholar 

  26. E. A. Tukhmeneva, S. Yu. Tolstyakov, G. S. Kurskiev, V. K. Gusev, V. B. Minaev, Yu. V. Petrov, N. V. Sakharov, A. Yu. Telnova, N. N. Bakharev, P. B. Shchegolev, and E. O. Kiselev, Plasma Sci. Technol. 21, 105104 (2019). https://doi.org/10.1088/2058-6272/ab305f

    Article  ADS  Google Scholar 

  27. E. A. Tukhmeneva, S. Yu. Tolstyakov, G. S. Kurskiev, V. K. Gusev, V. B. Minaev, Yu. V. Petrov, N. V. Sakharov, A. Yu. Telnova, N. N. Bakharev, P. B. Shegolev, and E. O. Kiselev, J. Phys.: Conf. Ser. 1383, 012001 (2019). https://doi.org/10.1088/1742-6596/1383/1/012001

    Article  Google Scholar 

  28. W. A. Houlberg, K. C. Shaing, S. P. Hirshman, and M. C. Zarnstorff, Phys. Plasmas 4, 3230 (1997). https://doi.org/10.1063/1.872465

    Article  ADS  Google Scholar 

  29. N. V. Sakharov, A. V. Voronin, V. K. Gusev, A. A. Kavin, S. N. Kamenshchikov, K. M. Lobanov, V. B. Minaev, A. N. Novokhatsky, M. I. Patrov, Yu. V. Petrov, and P. B. Shchegolev, Plasma Phys. Rep. 41 (12), 997 (2015). https://doi.org/10.1134/S1063780X15120120

    Article  ADS  Google Scholar 

  30. V. I. Afanasyev, A. Gondhalekar, and A. I. Kislyakov, Tech. Rep. JET-R(00)04 (Luxembourg, 1999), p. 20. www.iop.org/Jet/fulltext/JETR00004.pdf

  31. A. Polevoi, H. Shirai, and T. Takizuka, JAERI-Data/Code 97-014 (March 1997).

  32. A. A. Ware, Phys. Rev. Lett. 25, 15 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  33. V. A. Tokarev, V. K. Gusev, N. A. Khromov, M. I. Patrov, Yu. V. Petrov, and V. I. Varfalomeev, J. Phys.: Conf. Ser. 1094, 012003 (2018). https://doi.org/10.1088/1742-6596/1094/1/012003

    Article  Google Scholar 

  34. J. W. Connor, T. Fukuda, X. Garbet, C. Gormezano, V. Mukhovatov, M. Wakatani, the ITB Database Group, the ITPA Topical Group on Transport, and Internal Barrier Physics, Nucl. Fusion 44 (4), R1 (2004). https://doi.org/10.1088/0029-5515/44/4/R01

    Article  Google Scholar 

  35. A. R. Field, C. Michael, R. J. Akers, J. Candy, G. Colyer, W. Guttenfelder, Y.-C. Ghim, C. M. Roach, S. Saarelma, and the MAST Team, Nucl. Fusion 51, 063006 (2011). https://doi.org/10.1088/0029-5515/51/6/063006

    Article  Google Scholar 

  36. H. Y. Yuh, F. M. Levinton, R. E. Bell, J. C. Hosea, S. M. Kaye, B. P. LeBlanc, E. Mazzucato, J. L. Peterson, D. R. Smith, J. Candy, R. E. Waltz, C. W. Domier, N. C. Luhmann, Jr., W. Lee, and H. K. Park, Phys. Plasmas 16, 056120 (2009). https://doi.org/10.1063/1.3129163

    Article  ADS  Google Scholar 

  37. E. A. Tyukhmeneva, N. N. Bakharev, V. I. Varfolomeev, V. K. Gusev, N. S. Zhil’tsov, E. O. Kiselev, G. S. Kurskiev, V. B. Minaev, Yu. V. Petrov, N. V. Sakharov, A. D. Sladkomedova, A. Yu. Tel’nova, S. Yu. Tolstyakov, and P. B. Shchegolev, Pisma Zh. Tekh. Fiz. (2020) (in press).

  38. G. F. Avdeeva, I. V. Miroshnikov, N. N. Bakharev, G.  S. Kurskiev, M. I. Patrov, V. Yu. Sergeev, and P. B. Schegolev, J. Phys.: Conf. Ser. 666, 012002 (2016). https://doi.org/10.1088/1742-6596/666/1/012002

    Article  Google Scholar 

  39. A. Yu. Tel’nova, G. S. Kurskiev, I. V. Miroshnikov, G. F. Avdeeva, N. N. Bakharev, V. K. Gusev, V. B. Minaev, A. D. Mel’nik, Yu. V. Petrov, N. V. Sakharov, F. V. Chernyshev, and P. B. Shchegolev, Tech. Phys. Lett. 44 (8), 700 (2018). https://doi.org/10.1134/S1063785018080126

    Article  ADS  Google Scholar 

  40. A. Yu. Telnova, G. S. Kurskiev, I. V. Miroshnikov, N. V. Sakharov, E. O. Kiselev, M. M. Larionova, N. N. Bakharev, D. M. Larionova, V. K. Gusev, N. A. Khromov, V. B. Minaev, M. I. Patrov, Yu. V. Petrov, A. D. Sladkomedova, P. B. Shchegolev, et al., Plasma Phys. Controlled Fusion 62, 045011 (2020). https://doi.org/10.1088/1361-6587/ab6da5

    Article  ADS  Google Scholar 

  41. M. Valovic, R. Akers, G. Cunningham, L. Garzotti, B. Lloyd, D. Muir, A. Patel, D. Taylor, M. Turnyanskiy, M. Walsh, and the MAST Team, Nucl. Fusion 49, 075016 (2009). https://doi.org/10.1088/0029-5515/49/7/075016

    Article  Google Scholar 

  42. S. M. Kaye, F. M. Levinton, D. Stutman, K. Tritz, H. Yuh, M. G. Bell, R. E. Bell, C. W. Domier, D. Gates, W. Horton, J. Kim, B. P. LeBlanc, N. C. Luhmann, Jr, R. Maingi, E. Mazzucato, et al., Nucl. Fusion 47, 499 (2007). https://doi.org/10.1088/0029-5515/47/7/001

    Article  ADS  Google Scholar 

Download references

Funding

The experiments were carried out on the Globus-M spherical tokamak unique scientific installation, which is part of the Federal Center for Collective Use “Materials Science and Diagnostics in Advanced Technologies,” unique identifier RFMEFI62119X0021.

The studies of heat and particle transfer described in Sections 2 and 4 performed by E.O. Kiselev, G.S. Kurskiev, V.B. Minaev, N.V. Sakharov, P.B. Shchegolev, A.Yu. Telnova, and E.A. Tyukhmeneva were supported by the Russian Science Foundation, project no. 17-72-20076.

The investigations of plasma MHD instabilities described in Section 2 were carried out as part of a state assignment of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Telnova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telnova, A.Y., Kurskiev, G.S., Balachenkov, I.M. et al. First Heat and Particles Transport Study in the Globus-M2 Spherical Tokamak with Neutral Beam Injection at the Current Ramp-Up. Tech. Phys. 66, 401–408 (2021). https://doi.org/10.1134/S1063784221030221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221030221

Navigation