Skip to main content
Log in

Effect of a small C3O2 additive on the vibrational distribution function of CO molecules in a low-temperature plasma

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The concentration of carbon suboxide (C3O2) in the plasmas of sealed-off discharges in mixtures of CO with noble gases is measured for the first time by mass-spectroscopic technique. It is shown that the production of C3O2 (and, possibly, more complex carbon oxides) in a gas-discharge plasma significantly boosts the vibrational relaxation of CO molecules and thus greatly affects their vibrational populations. Adding xenon to a He: CO mixture reduces the concentration of C3O2. The effect of pulsed UV radiation on the vibrational populations of CO molecules is studied experimentally. It is shown that UV irradiation of the gas mixture after long-term discharge operation increases vibrational populations in the plateau region up to the values observed at the beginning of the discharge. This effect is attributed to the decay of C3O2 molecules under the action of UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Mikaberidze, V. N. Ochkin, and N. N. Sobolev, Zh. Tekh. Fiz. 42, 1464 (1972) [Sov. Phys. Tech. Phys. 17, 1166 (1972)].

    Google Scholar 

  2. K. M. D’Amico and A. L. S. Smith, J. Phys. D 10, 261 (1977).

    ADS  Google Scholar 

  3. É. A. Trubacheev, Tr. Fiz. Inst. im. P.N. Lebedeva Ross. Akad. Nauk 102, 1 (1977).

    Google Scholar 

  4. V. S. Aleĭnikov and V. I. Masychev, CO 2 Lasers (Radio i Svyaz’, Moscow, 1990) [in Russian].

    Google Scholar 

  5. G. M. Grigorian and Yu. Z. Ionikh, Khim, Vys. Énerg. 23, 548 (1989).

    Google Scholar 

  6. G. B. Caledonia, B. D. Green, and R. E. Murphy, J. Chem. Phys. 71, 4369 (1979).

    Article  ADS  Google Scholar 

  7. G. M. Grigorian and I. V. Kochetov, in Proceedings of VI International Scientific Seminar on Nonequilibrium Processes and Applications, Minsk, 2002, p. 8.

  8. F. K. MacTaggart, Plasma Chemistry in Electrical Discharges (American Elsevier, New York, 1967; Atomizdat, Moscow, 1972).

    Google Scholar 

  9. D. I. Slovetskiĭ, Plasma Chemistry, Ed. by B. M. Smirnov (Énergoatomizdat, Moscow, 1984), Vol. 11, p. 234 [in Russian].

    Google Scholar 

  10. A. I. Maksimov, L. S. Polak, D. I. Slovetskiĭ, et al., Khim. Vys. Énerg. 13, 358 (1973).

    Google Scholar 

  11. G. M. Grigorian, N. A. Dyatko, and I. V. Kochetov, Fiz. Plazmy 28, 768 (2003) [Plasma Phys. Rep. 28, 709 (2003)].

    Google Scholar 

  12. G. M. Grigorian and I. V. Kochetov, Fiz. Plazmy 30, 845 (2004) [Plasma Phys. Rep. 30 788 (2004)].

    Google Scholar 

  13. K. R. Horn and P. E. Oettinger, J. Chem. Phys. 54, 3040 (1971).

    Article  Google Scholar 

  14. G. M. Grigorian, B. M. Dymshits, and Yu. Z. Ionikh, Opt. Spektrosk. 65, 686 (1988) [Opt. Spectrosc. (USSR) 65, 452 (1988)].

    Google Scholar 

  15. J. E. Land, J. Appl. Phys. 49, 5716 (1978).

    Article  ADS  Google Scholar 

  16. G. N. Haddad and H. B. Milloy, Aust. J. Phys. 36, 473 (1983).

    ADS  Google Scholar 

  17. H. Ehrhardt, L. Langhans, F. Linder, and H. S. Taylor, Phys. Rev. 173, 222 (1968).

    Article  ADS  Google Scholar 

  18. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, et al., Teplofiz. Vys. Temp. 22, 1048 (1984).

    Google Scholar 

  19. J. L. Pack, R. E. Voshall, A. V. Phelps, and L. E. Kline, J. Appl. Phys. 71, 5363 (1992).

    Article  ADS  Google Scholar 

  20. A. A. Mityureva and V. V. Smirnov, J. Phys. B 27, 1869 (1994).

    Article  ADS  Google Scholar 

  21. V. Yu. Baranov, V. M. Borisov, F. I. Vysika’lo, et al., Preprint No. 3080 (Kurchatov Inst. of Atomic Energy, Moscow, 1979).

  22. N. L. Aleksandrov, I. V. Kochetov, and A. P. Napartovich, Khim, Vys. Énerg. 20, 291 (1986).

    Google Scholar 

  23. N. L. Aleksandrov, A. M. Konchakov, and É. E. Son, Zh. Tekh. Fiz. 49, 1200 (1979) [Sov. Phys. Tech. Phys. 24, 661 (1979)].

    Google Scholar 

  24. G. M. Grigorian, O. V. Ivanova, Yu. Z. Ionikh, and I. V. Kochetov, in Proceedings of IV International Symposium on Theoretical and Applied Plasmochemistry, Ivanovo, 2005, Vol. 1, p. 103.

  25. B. R. Weiner and R. N. Rosenfeld, J. Phys. Chem. 90, 4037 (1986).

    Article  Google Scholar 

  26. Yu. B. Konev, I. V. Kochetov, V. G. Pevgov, and V. F. Sharkov, Preprint No. 2821 (Kurchatov Inst. of Atomic Energy, Moscow, 1977).

  27. O. Dunn, P. Harteck, and S. Dondes, J. Chem. Phys. 77, 878 (1973).

    Google Scholar 

  28. P. Harteck, R. R. Reeves, and B. A. Tompson, Z. Naturfosch. A 19, 1 (1964).

    Google Scholar 

  29. P. B. Roussel and R. A. Back, J. Photochem. 46, 159 (1989).

    Google Scholar 

  30. E. E. Ivanov, Yu. Z. Ionikh, N. P. Penkin, and N. V. Chernysheva, Khim. Fiz. 7, 1694 (1988).

    Google Scholar 

  31. F. Goss, K. Sadeghi, and J. C. Pebay-Peyroula, Chem. Phys. Lett. 13, 557 (1972).

    ADS  Google Scholar 

  32. D. Hussain and L. J. Kirsch, Trans. Faraday Soc. 67, 2025 (1971).

    Google Scholar 

  33. J. C. Stephenson, J. Chem. Phys. 60, 3502 (1974).

    Google Scholar 

  34. K. D. Bayes, J. Am. Chem. Soc. 85, 1730 (1963).

    Article  Google Scholar 

  35. C. Willis and K. D. Bayes, J. Phys. Chem. 71, 3667 (1967).

    Article  Google Scholar 

  36. C. E. M. Strauss, S. H. Kable, G. K. Chawia, and P. L. Houstran, J. Chem. Phys. 94, 1837 (1991).

    Article  ADS  Google Scholar 

  37. D. J. Anderson and R. N. Rosenfeld, J. Chem. Phys. 94, 7357 (1991).

    Google Scholar 

  38. D. A. Long, F. S. Murfin, and R. S. William, Proc. R. Soc. London, Ser. A 223, 251 (1953).

    ADS  Google Scholar 

  39. F. Goss, N. Sadegh, and J. C. Pebay-Peyrulla, Chem. Phys. Lett. 13, 557 (1972).

    ADS  Google Scholar 

  40. C. Kunz, P. Harteck, and S. Dondes, J. Chem. Phys. 46, 4157 (1967).

    Article  Google Scholar 

  41. B. N. Wann and H. Langhaff, J. Chem. Phys. 97, 8137 (1992).

    ADS  Google Scholar 

  42. N. F. Levittes and C. C. Davis, J. Chem. Phys. 62, 1952 (1978).

    ADS  Google Scholar 

  43. G. M. Grigorian, B. M. Dymshits, and Yu. Z. Ionikh, Opt. Spektrosk. 65, 766 (1988) [Opt. Spectrosc. (USSR) 65, 452 (1988)].

    Google Scholar 

  44. G. M. Grigorian, B. M. Dymshits, and Yu. Z. Ionikh, Kvant. Élektron. 6, 1377 (1989).

    Google Scholar 

  45. T. Shimanovich, J. Phys. Chem. Ref. Data 6, 1087 (1997).

    Google Scholar 

  46. E. N. Karyakin, A. F. Krupnov, and S. M. Shapin, J. Mol. Phys. 94, 283 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.M. Grigorian, I.V. Kochetov, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 3, pp. 273–280.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorian, G.M., Kochetov, I.V. Effect of a small C3O2 additive on the vibrational distribution function of CO molecules in a low-temperature plasma. Plasma Phys. Rep. 32, 246–253 (2006). https://doi.org/10.1134/S1063780X0603007X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X0603007X

PACS numbers

Navigation