Skip to main content
Log in

On the Effect of the Cl2 + O2 + Ar Mixture Composition on the Concentrations of Chlorine and Oxygen Atoms in a Plasma

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The effect of the initial composition of the Cl2 + O2 + Ar mixture on the electrical parameters of a plasma and stationary concentrations of atomic particles under an inductive rf (13.56 MHz) discharge is studied by optical emission spectroscopy. It is shown that the variation in the O2/Ar ratio at a constant Cl2 content in the plasma gas does not lead to significant perturbations of the parameters of the electron component of the plasma, while a slight change in the concentration of chlorine atoms is determined probably by the kinetics of the heterogeneous and volumetric atomic-molecular processes. In contrast, substituting Ar for Cl2 at a constant O2 content is accompanied by an increase in the efficiency of the electron impact-induced processes, which causes a noticeable increase in the concentration of oxygen atoms. Thus, the second gas mixing mode ensures wider ranges of controlling both the absolute atomic concentrations and the ratio between these values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Nojiri, K., Dry Etching Technology for Semiconductors, Tokyo: Springer, 2015.

    Book  Google Scholar 

  2. Roosmalen, J., Baggerman, J.A.G., and Brader, S.J., Dry Etching for VLSI, New York: Plenum, 1991.

    Book  Google Scholar 

  3. Rooth, J.R., Industrial Plasma Engineering, Vol. 2: Applications to Nonthermal Plasma Processing, Bristol: IOP Publ., 2001.

    Google Scholar 

  4. Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.

    Google Scholar 

  5. Vitale, S., Chae, H., and Sawin, H.H., Silicon etching yields in F2, Cl2, Br2, and HBr high density plasmas, J. Vac. Sci. Technol., A, 2001, vol. 19, no. 5, pp. 2197–2206.

    Article  Google Scholar 

  6. Lee, C., Graves, D.B., and Lieberman, M.A., Role of etch products in polysilicon etching in a high-density chlorine discharge, Plasma Chem. Plasma Process., 1996, vol. 16, pp. 99–118.

    Article  Google Scholar 

  7. Chuang, M.C. and Coburn, J.W., Molecular-beam study of gas-surface chemistry in the ion-assisted etching of silicon with atomic and molecular-hydrogen and chlorine, J. Vac. Sci. Technol., A, 1990, vol. 8, no. 3, pp. 1969–1976.

    Article  Google Scholar 

  8. Jin, W., Vitale, S.A., and Sawin, H.H., Plasma-surface kinetics and simulation of feature profile evolution in Cl2 + HBr etching of polysilicon, J. Vac. Sci. Technol., A, 2002, vol. 20, pp. 2106–2114.

    Article  Google Scholar 

  9. Tinck, S., Boullart, W., and Bogaerts, A., Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: Effects of SiO2 chamber wall coating, Plasma Sources Sci. Technol., 2011, vol. 20, p. 045012.

    Article  Google Scholar 

  10. Lee, B.J., Efremov, A., Kim, J., Kim, C., and Kwon, K.-H., Peculiarities of Si and SiO2 etching kinetics in HBr + Cl2 + O2 inductively coupled plasma, Plasma Chem. Plasma Process., 2019, vol. 39, no. 1, pp. 339–358.

    Article  Google Scholar 

  11. Lee, B.J., Efremov, A., Nam, Y., and Kwon, K.-H., On the control of plasma chemistry and silicon etching kinetics in ternary HBr + Cl2 + O2 gas system: Effects of HBr/O2 and Cl2/O2 mixing ratios, Sci. Adv. Mater., 2020, vol. 12, pp. 628–640.

    Article  Google Scholar 

  12. Lim, N., Efremov, A., and Kwon, K.-H., Comparative study of Cl2 + O2 and HBr + O2 plasma chemistries in respect to silicon reactive-ion etching process, Vacuum, 2021, vol. 186, pp. 110043.

    Article  Google Scholar 

  13. Nakata, H., Nishioka, K., and Abe, H., Plasma etching characteristics of chromium film and its novel etching mode, J. Vac. Sci. Technol., 1980, vol. 17, pp. 1351–1357.

    Article  Google Scholar 

  14. Hsu, C.C., Coburn, J.W., and Graves, D.B., Etching of ruthenium coatings in O2- and Cl2-containing plasmas, J. Vac. Sci. Technol., A, 2006, vol. 24, no. 1, pp. 1–8.

    Article  Google Scholar 

  15. Efremov, A.M. and Kwon, K.-H., Kinetics of reactive ion etching of Si, SiO2, and Si3N4 in C4F8 + O2 + Ar plasma: effect of the C4F8/O2 mixing ratio, Russ. Microelectron., 2021, vol. 50, no. 2, pp. 92–101.

    Article  Google Scholar 

  16. Efremov, A.M., Murin, D.B., and Kwon, K.-H., Special aspects of the kinetics of reactive ion etching of SiO2 in fluorine-, chlorine-, and bromine-containing plasma, Russ. Microelectron., 2020, vol. 49, no. 4, pp. 233–244.

    Article  Google Scholar 

  17. Hsu, C.C., Nierode, M.A., Coburn, J.W., and Graves, D.B., Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas, J. Phys. D: Appl. Phys., 2006, vol. 39, no. 15, pp. 3272–3284.

    Article  Google Scholar 

  18. Amirov, I.I. and Alov, N.V., Polymer film deposition in inductively coupled radio-frequency discharge plasma of perfluorocyclobutane mixed with sulfur hexafluoride, High Energy Chem., 2006, vol. 40, no. 4, pp. 267–272.

    Article  Google Scholar 

  19. NIST Atomic Spectra Database. https://www.nist. gov/pml/atomic-spectra-database. Accessed April 15, 2022.

  20. Lim, N., Choi, Y.S., Efremov, A., and Kwon, K.-H., Dry etching performance and gas-phase parameters of C6F12O + Ar plasma in comparison with CF4 + Ar, Materials, 2021, vol. 14, pp. 1595.

  21. Lopaev, D.V., Volynets, A.V., Zyryanov, S.M., Zotovich, A.I., and Rakhimov, A.T., Actinometry of O, N and F atoms, J. Phys. D: Appl. Phys., 2017, vol. 50, pp. 075202.

    Article  Google Scholar 

  22. Efremov, A.M., Kupriyanovskaya, A.P., and Svettsov, V.I., Radiation spectrum of a glow discharge in chlorine, Zh. Prikl. Spektrosk., 1993, vol. 59, nos. 3–4, pp. 221–225.

    Google Scholar 

  23. Lee, C. and Lieberman, M.A., Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges, J. Vac. Sci. Technol., A, 1995, vol. 13, pp. 368–380.

    Article  Google Scholar 

  24. Ganas, P.S., Electron impact excitation cross sections for chlorine, J. Appl. Phys., 1988, vol. 63, pp. 277–279.

    Article  Google Scholar 

  25. Efremov, A., Lee, J., and Kwon, K.-H., A comparative study of CF4, Cl2 and HBr + Ar inductively coupled plasmas for dry etching applications, Thin Solid Films, 2017, vol. 629, pp. 39–48.

    Article  Google Scholar 

  26. Efremov, A., Min, N.K., Choi, B.G., Baek, K.H., and Kwon, K.-H., Model-based analysis of plasma parameters and active species kinetics in Cl2/X (X = Ar, He, N2) inductively coupled plasmas, J. Electrochem. Soc., 2008, vol. 155, no. 12, pp. D777–D782.

    Article  Google Scholar 

  27. Efremov, A.M., Kim, G.H., Kim, J.G., Bogomolov, A.V., and Kim, C.I., On the applicability of self-consistent global model for the characterization of Cl2/Ar inductively coupled plasma, Microelectron. Eng., 2007, vol. 84, no. 1, pp. 136–143.

    Article  Google Scholar 

  28. Efremov, A.M., Kim, D.-P., and Kim, C.-I., Inductively coupled Cl2/O2 plasma: Experimental investigation and modeling, Vacuum, 2004, vol. 75, no. 3, pp. 237–246.

    Article  Google Scholar 

  29. Tinck, S., Boullart, W., and Bogaerts, A., Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: Effects of SiO2 chamber wall coating, Plasma Sources Sci. Technol., 2011, vol. 20, p. 045012.

    Article  Google Scholar 

  30. Hanish, C.K., Grizzle, J.W., and Teny, F.L., Estimating and controlling atomic chlorine concentration via actinometry, IEEE Trans. Semicond. Manuf., 1999, vol. 12, no. 3, pp. 323–331.

    Article  Google Scholar 

  31. Fuller, N., Herman, I., and Donnelly, V., Optical actinometry of Cl2, Cl, Cl+, and Ar+ densities in inductively coupled Cl2-Ar plasmas, J. Appl. Phys., 2001, vol. 90, pp. 3182–3191.

    Article  Google Scholar 

  32. Handbook of Chemistry and Physics, Boca Raton, FL: CRC, 1998.

  33. Lee, B.J., Lee, B.J., Efremov, A., Yang, J.W., and Kwon, K.H., Etching characteristics and mechanisms of MoS2 2D crystals in O2/Ar inductively coupled plasma, J. Nanosci. Nanotechnol., 2016, vol. 16, no. 11, pp. 11201–11209.

    Article  Google Scholar 

  34. NIST Chemical Kinetics Database. https://kinetics.nist. gov/kinetics/index.jsp. Accessed April 15, 2022.

Download references

Funding

This study was carried out as part of a state assignment of the Ministry of Science and Higher Education of the Russian Federation for Valiev Institute of Physics and Technology of the Russian Academy of Sciences, theme no. FFNN-2022-0017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. I. Amirov or A. M. Efremov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirov, I.I., Izyumov, M.O. & Efremov, A.M. On the Effect of the Cl2 + O2 + Ar Mixture Composition on the Concentrations of Chlorine and Oxygen Atoms in a Plasma. Russ Microelectron 51, 497–504 (2022). https://doi.org/10.1134/S1063739722700135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722700135

Keywords:

Navigation