Skip to main content
Log in

Radiochemical Investigations for Radiopharmaceutical Nuclear Medicine at JINR Laboratory of Nuclear Problems

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In recent years, radiopharmaceuticals have been increasingly used for diagnostics and treatment of cancer. In addition to a biological vector, a modern radiopharmaceutical includes a chelator that binds the radionuclide, as well as a linker for connecting the vector and the chelator. The development of such an approach requires the improvement of methods for obtaining and purifying radionuclides, and the development of methods for the synthesis of radiopharmaceuticals, i.e., preparative direction. It is also necessary to search for new vectors and chelators. This implies the development of methods for analyzing the properties of radiopharmaceuticals in general, as well as their precursors, i.e., analytical direction. In this review, we describe the prerequisites for successfully solving a wide range of challenges in these two areas of nuclear medicine at the Scientific and Experimental Department of Nuclear Spectroscopy and Radiochemistry of the Laboratory of Nuclear Problems of the Joint Institute for Nuclear Research (LNP JINR). These prerequisites are due to rich experience in obtaining the widest range of radionuclides and their application for various spectrometric studies. Both the past and present works on radiopharmaceutical topics carried out in the department are described, and ways of future development are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.

Similar content being viewed by others

REFERENCES

  1. C. F. Ramogida and C. Orvig, “Tumour targeting with radiometals for diagnosis and therapy,” Chem. Commun. 49, 4720–4739 (2013).

    Article  Google Scholar 

  2. H. Sung et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer J. Clin. 71, 209–249 (2021).

    Google Scholar 

  3. A. Dash, F. F. R. Knapp, and M. R. A. Pillai, “Targeted radionuclide therapy–an overview,” Curr. Radiopharm. 6, 152–180 (2013).

    Article  Google Scholar 

  4. W. J. G. Oyen et al., “Targeted therapy in nuclear medicine–current status and future prospects,” Ann. Oncol. 18, 1782–1792 (2007).

    Article  Google Scholar 

  5. A. Boschi, L. Uccelli, and P. Martini, “A picture of modern Tc-99m radiopharmaceuticals: Production, chemistry, and applications in molecular imaging,” Appl. Sci. 9, 1–16 (2019).

    Article  Google Scholar 

  6. I. Velikyan, “68Ga-based radiopharmaceuticals: Production and application relationship,” Molecules 20, 12913–12943 (2015).

    Article  Google Scholar 

  7. M. A. Deri et al., “PET imaging with 89Zr: From radiochemistry to the clinic,” Nucl. Med. Biol. 40, 3–14 (2013).

    Article  Google Scholar 

  8. G. Sgouros et al., “MIRD pamphlet No. 22 (Abridged): Radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy,” J. Nucl. Med. 51, 311–328 (2010).

    Article  Google Scholar 

  9. R. P. Baum et al., “177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: Safety and efficacy,” J. Nucl. Med. 57, 1006–1013 (2016).

    Article  Google Scholar 

  10. E. Ilan et al., “Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE,” J. Nucl. Med. 56, 177–182 (2015).

    Article  Google Scholar 

  11. J. Ferdinandus et al., “Prostate-specific membrane antigen theranostics: Therapy with lutetium-177,” Curr. Opin. Urol. 28, 197–204 (2018).

    Article  Google Scholar 

  12. M. J. Van der Doelen et al., “Clinical outcomes and molecular profiling of advanced metastatic castration-resistant prostate cancer patients treated with 225Ac-PSMA-617 targeted alpha-radiation therapy,” Urol. Oncol. 39, 729.e7–729.e16 (2021).

    Article  Google Scholar 

  13. C. Kratochwil et al., “225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer,” J. Nucl. Med. 57, 1941–1944 (2016).

    Article  Google Scholar 

  14. M. Weineisen et al., “68Ga-and 177Lu-labeled PSMA I&T: Optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies,” J. Nucl. Med. 56, 1169–1176 (2015).

    Article  Google Scholar 

  15. F. Liu et al., “68Ga/177Lu-labeled DOTATATE shows similar imaging and biodistribution in neuroendocrine tumor model,” Tumor Biol. 39, 1–9 (2017).

    Article  Google Scholar 

  16. R. Zhao et al., “Synthesis and evaluation of 68Ga- and 177Lu-labeled (R)- vs (S)-DOTAGA prostate-specific membrane antigen-targeting derivatives,” Mol. Pharmaceutics 17, 4589–4602 (2020).

    Article  Google Scholar 

  17. M. J. Zacherl et al., “First clinical results for PSMA-targeted α-therapy using 225Ac-PSMA-I&T in advanced-mCRPC patients,” J. Nucl. Med. 62, 669–674 (2021).

    Article  Google Scholar 

  18. K. P. Zhernosekov et al., “Processing of generator-produced 68Ga for medical application,” J. Nucl. Med. 48, 1741–1748 (2007).

    Article  Google Scholar 

  19. N. A. Lebedev et al., “Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n,γ)177Yb →177Lu process,” Appl. Radiat. Isot. 53, 421–425 (2000).

    Article  Google Scholar 

  20. A. Baimukhanova et al., “An alternative radiochemical separation strategy for isolation of Ac and Ra isotopes from high energy proton irradiated thorium targets for further application in Targeted Alpha Therapy (TAT),” Nucl. Med. Biol. 112113, 35–43 (2022).

    Article  Google Scholar 

  21. D. V. Filosofov et al., “Isolation of radionuclides from thorium targets irradiated with 300-MeV protons,” Radiochemistry 55, 410–417 (2013).

    Article  Google Scholar 

  22. L. Wharton et al., “Chemical promiscuity of non-macrocyclic multidentate chelating ligands for radiometal ions: H4neunpa-NH2 vs H4noneunpa,” Inorg. Chem. 60, 4076–4092 (2021).

    Article  Google Scholar 

  23. V. Radchenko et al., “Direct flow separation strategy, to isolate no-carrier-added 90Nb from irradiated Mo or Zr targets,” Radiochim. Acta 104, 625–634 (2016).

    Article  Google Scholar 

  24. V. Radchenko et al., “90Nb–a potential PET nuclide: Production and labeling of monoclonal antibodies,” Radiochim. Acta 100, 857–864 (2012).

    Article  Google Scholar 

  25. V. Radchenko et al., “Separation of 90Nb from zirconium target for application in immuno-pet, Radiochim. Acta 102, 433–442 (2014).

    Article  Google Scholar 

  26. V. Radchenko et al., “Labeling and preliminary in vivo assessment of niobium-labeled radioactive species: A proof-of-concept study,” Nucl. Med. Biol. 43, 280–287 (2016).

    Article  Google Scholar 

  27. E. S. Kurakina et al., “Production of 111In and radioisotopes of Te and Sn from an antimony target irradiated with high-energy protons,” Radiochemistry 62, 393–399 (2020).

    Article  Google Scholar 

  28. J. A. Dadakhanov et al., “172Hf → 172Lu radionuclide generator based on a reverse-tandem separation scheme,” Radiochemistry 60, 415-426 (2018).

    Article  Google Scholar 

  29. K. P. Zhernosekov et al., “A 140Nd/140Pr radionuclide generator based on physicochemical transitions in 140Pr complexes after electron capture decay of 140Nd-DOTA,” Radiochim. Acta 95, 319–327 (2007).

    Article  Google Scholar 

  30. N. T. Temerbulatova et al., “Rare earths doped ferrites, characterized by Time Differential γγ Perturbed Angle Correlations method,” J. Solid State Chem. 277, 281–289 (2019).

    Article  ADS  Google Scholar 

  31. M. Z. Budzinsky et al., “Use of 44Ti in the time-differential γγ perturbed-angular-correlation method for studying condensed matter,” Instrum. Exp. Tech. 60, 775-781 (2017).

    Article  Google Scholar 

  32. D. V. Filosofov et al., “Investigation of the DTPA complex formations of indium and cadmium by a γγ-perturbed angular correlation method,” Jahresbericht, Institut für Kernchemie 3, 2002 (2004).

    Google Scholar 

  33. V. B. Brudanin et al., “PAC spectrometer for condensed matter investigation,” Nucl. Instrum. Methods Phys. Res., Sect. A 547, 389-399 (2005).

    Google Scholar 

  34. V. A. Khalkin and N. A. Lebedev, “Spallation produced radiolanthanoides via tantalum. Coprecipitation with fluorides and separation in short columns with cation exchange resin,” J. Radioanal. Nucl. Chem. 88, 153–160 (1985).

    Article  Google Scholar 

  35. N. A. Lebedev, “Production of radioactive preparations of rare earth elements and radiation sources for nuclear spectroscopic studies,” Candidate’s Dissertation in Chemistry (JINR, Dubna, 1973).

  36. G. R. Choppin and R. J. Silva, “Separation of the lanthanides by ion exchange with alpha-hydroxyisobutyrieacid,” J. Inorg. Nucl. Chem. 3, 153–154 (1956).

    Article  Google Scholar 

  37. G. J. Beyer et al., “Fast isobaris separation at the collector of ISOL-facilities,” Nucl. Instrum. Methods 186, 401–407 (1981).

    Article  ADS  Google Scholar 

  38. G. J. Beyer et al., “The role of diffusion in ISOL targets for the production of radioactive ion beams,” Nucl. Instrum. Methods Phys. Res., Sect. B 204, 225–234 (2003).

    Google Scholar 

  39. V. G. Kalinnikov et al., “Experimental complex to study nuclei far from the β-stability line–YASNAPP-2,” Preprint OIYaI D13-90-183 (JINR, Dubna, 1990).

    Google Scholar 

  40. V. G. Kalinnikov et al., “Experimental complex to study nuclei far from the beta-stability line-ISOL facility YASNAPP-2,” Nucl. Instrum. Methods Phys. Res. 70, 62–68 (1992).

    Article  ADS  Google Scholar 

  41. M. Lewandowski et al., “New 157Lu isomer,” Z. Phys. A 340, 107–108 (1991).

    Article  ADS  Google Scholar 

  42. G. J. Beyer et al., “Production routes of the alpha emitting 149Tb for medical application,” Radiochim. Acta 90, 247–252 (2002).

    Article  Google Scholar 

  43. M. Van de Voorde et al., “Production of Sm-153 with very high specific activity for targeted radionuclide therapy,” Front. Med. 8, 1–9 (2021).

    Article  Google Scholar 

  44. C. Duchemin et al., “CERN-MEDICIS: A unique facility for the production of nonconventional radionuclides for the medical research,” in Proceedings of the 11th International Particle Accelerator Conference, Caen, France, 2020.

  45. S. Warren et al., “Offline 2, ISOLDE’s target, laser and beams development facility,” Nucl. Instrum. Methods Phys. Res., Sect. B 463, 115–118 (2020).

    Google Scholar 

  46. Tz. Vylov, “Emission spectra of radioactive nuclides measured with semiconductor detectors,” ZfK-399 (IEAE, Vienne, 1980).

    Google Scholar 

  47. Tz. Vylov et al., “Atlas of emission spectra of radionuclides for medical purposes,” Preprint KIYaI-88-51 (Kiev Inst. Nucl. Res., Kiev, 1988).

    Google Scholar 

  48. Tz. Vylov et al., “Catalogue of radionuclide low-energy electron spectra (LEES),” Preprint OIYaI E6-2003–31 (JINR, Dubna, 2003).

    Google Scholar 

  49. Bauer C. et al., “Background-free search for neutrinoless double-β decay of 76Ge with GERDA,” Nature 544, 47–52 (2017).

    Article  ADS  Google Scholar 

  50. R. Arnold et al., “Technical design and performance of the NEMO 3 detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 536, 79–122 (2005).

    Google Scholar 

  51. Q. Arnaud et al., “Optimizing EDELWEISS detectors for low-mass WIMP searches,” Phys. Rev. D 97, 022003 (2018).

    Article  ADS  Google Scholar 

  52. A. Jeremie, “The SuperNEMO demonstrator double beta experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 958, 162115 (2020).

    Google Scholar 

  53. E. S. Kurakina et al., “Improved separation scheme for 44Sc produced by irradiation of natCa targets with 12.8 MeV protons,” Nucl. Med. Biol. 104105, 22–27 (2022).

    Article  Google Scholar 

  54. V. Radchenko, A. Baimukhanova, and D. Filosofov, “Radiochemical aspects in modern radiopharmaceutical trends: A practical guide,” Solvent Extr. Ion Exch. 39, 714–744 (2021).

    Article  Google Scholar 

  55. E. Hermann et al., “Separation of neutron-deficient isotopes of elements of the cerium group of rare earths from erbium irradiated with 680 MeV protons,” Radiokhimiya 6, 756–762 (1964).

    Google Scholar 

  56. D. Kim Tiung et al., “Extraction chromatographic separation of carrier-free Tb and Pm generated in (p, xn)-type nuclear reactions,” J. Radioanal Chem. 30, 353–360 (1976).

    Article  Google Scholar 

  57. Yu. V. Norseev, “Studying the chemistry of astatine at the Joint Institute for Nuclear Research (Dubna),” Preprint OIYaI R12-2013-32 (JINR, Dubna, 2013).

    Google Scholar 

  58. Yu. V. Norseev and V. A. Khalkin, “Discovery and study of the properties of new inorganic and organic compounds of astatine,” Preprint OIYaI R6-98-160 (JINR, Dubna, 1998).

    Google Scholar 

  59. Astatine: Gmelin Handbook of Inorganic Chemistry, 8th ed., Ed. by H. K. Kugler and C. Keller (Springer, Berlin, 1985).

    Google Scholar 

  60. V. Fu-Jung, G. Men-Hua, and V. A. Khalkin, “Chromatographic concentration of astatine,” Radiokhimiya 4, 94–98 (1962).

    Google Scholar 

  61. M. Bochvarova et al., “Columns filled with crystalline tellurium for the production of radiochemically pure preparations of astatine,” Sov. Radiochem. 14, 889–889895 (1972).

    Google Scholar 

  62. Yu. V. Norseev, “Investigation of the properties of new inorganic compounds of astatine,” Candidate’s Dissertation in Chemistry (JINR-Leningrad State Univ., 1973).

  63. A. Baimukhanova et al., “Utilization of (p, 4n) reaction for 86Zr production with medium energy protons and development of a 86Zr → 86Y radionuclide generator,” J. Radioanal. Nucl. Chem. 316, 191–199 (2018).

    Article  Google Scholar 

  64. D. V. Filosofov et al., “Production, concentration and deep purification of 111In radiochemicals,” Appl. Radiat. Isot. 55, 293—295 (2001).

    Article  Google Scholar 

  65. H. Thisgaard and M. Jensen, “119Sb–A potent Auger emitter for targeted radionuclide therapy,” Med. Phys. 35, 3839–3846 (2008).

    Article  Google Scholar 

  66. D. Filosofov, E. Kurakina, and V. Radchenko, “Potent candidates for Targeted Auger Therapy: Production and radiochemical considerations,” Nucl. Med. Biol. 9495, 1–19 (2021).

    Article  Google Scholar 

  67. V. A. Khalkin, A. F. Novgorodov, and A. Kolaczkowski, “On the possibility of using gas thermochromatography in the production of radionuclides,” Report 1073/c (Inst. Nucl. Phys., Krakow, 1979).

    Google Scholar 

  68. A. F. Novgorodov et al., “A simple method for the separation of 111In from silver by thermochromatography,” App. Radiat. Isotop. 37, 445–447 (1986).

    Article  Google Scholar 

  69. A. F. Novgorodov et al., “A simple method of high-temperature extraction of 111In from a massive tin target,” Sov. Radiochem. 29, 549–549554 (1987).

    Google Scholar 

  70. A. F. Novgorodov et al., “Simple thermochromatographic separation of 67Ga from metallic zinc targets,” Isotopenpraxis Isotopes in Environmental and Health Studies. Informa UK Limited, 26, 118–121 (1990).

    Google Scholar 

  71. A. F. Novgorodov et al., “A simple method of high-temperature isolation of 67Ga out of a massive germanium target,” Sov. Radiochem. 30, 672–676 (1988).

    Google Scholar 

  72. A. F. Novgorodov et al., “A simple method for the high-temperature separation of thallium isotopes from a massive lead target,” Sov. Radiochem. 29, 549–554 (1987).

    Google Scholar 

  73. V. M. Vakhtel et al., “Gas-thermochromatographic method for astatine separation. Relative yield of astatine isotopes from uranium,” Sov. Radiochem. 18, 886–893 (1976).

    Google Scholar 

  74. F. Rösch, A. F. Novgorodov, and S. M. Qaim, “Thermochromatographic separation of 94mTc from enriched molybdenum targets and its large-scale production for nuclear medical application,” Radiochim. Acta 64, 113–120 (1994).

    Article  Google Scholar 

  75. A. F. Novgorodov et al., “Thermochromatographic separation of no-carrier-added 186Re or 188Re from tungsten targets relevant to nuclear medical applications,” Radiochim. Acta 88, 163—167 (2000).

    Article  Google Scholar 

  76. M. Jennewein et al., “A no-carrier-added 72Se/72As radionuclide generator based on distillation,” Radiochim. Acta, 92, 245–249 (2004).

    Article  Google Scholar 

  77. A. F. Novgorodov et al., “A no-carrier-added 72Se/72As isotope generator,” J. Labelled Compd. Radiopharm. 44, 778–780 (2001).

    Article  Google Scholar 

  78. A. F. Novgorodov et al., “Investigation of the behavior of nuclear reaction products during their sublimation from irradiated Ag and Au in dynamic vacuum of 1‒10–1 Pa O2 or H2O,” Sov. Radiochem. 22, 763–775 (1980).

    Google Scholar 

  79. A. F. Novgorodov et al., “Investigation of the behavior of nuclear reaction products at their volatilization from irr–diated Ag and Au targets in dynamic vacuum 10–2–10–3 tort O2 or H2O,” J. Radioanal. Chem. 56, 37–51 (1980).

    Article  Google Scholar 

  80. Yu. V. Yushkevich, “Development of methods for obtaining radioactive monoisotope preparations at the YaSNAPP facility,” Candidate’s Dissertation in Engineering (JINR, Dubna, 1991).

  81. A. Kh. Inoyatov, “A new combined electrostatic beta spectrometer and the possibilities of its application in problems of precision low-energy electron spectrometry,” Candidate’s Dissertation in Mathematics and Physics (JINR, Dubna, 1986).

  82. A. Kovalík et al., “Various applications of precision low-energy nuclear electron spectrometry in the Katrin tritium neutrino project,” Phys. Part. Nucl. 50, 683–720 (2019).

    Article  Google Scholar 

  83. A. F. Novgorodov, “High-temperature isolation and thermochromatographic purification of spalled products,” Candidate’s Dissertation in Chemistry (Kurchatov Inst. Atomic Energy, Moscow, 1982).

  84. A. F. Novgorodov, F. Rösch, and N. A. Korolev, “Radiochemical Separations by Thermochromatography,” in Handbook of Nuclear Chemistry, Ed. by A. Vértes (Springer, Boston, MA, 2011), pp. 2429–2458.

    Google Scholar 

  85. W. Grimm et al., “Ein 90Sr/90Y-generator auf basis eines 3-säulensystems des kationenaustauschers Aminex-A6,” Annu Rep. Johannes Gutenberg Univ. Mainz (Mainz, 1999).

  86. V. Tsoupko-Sitnikov, Yu. Norseev, and V. Khalkin, “Generator of actinium-225,” J. Radioanal. Nucl. Chem. 205, 75–83 (1996).

    Article  Google Scholar 

  87. V. A. Khalkin, V. V. Tsupko-Sitnikov, and N. G. Zaitseva, “Radionuclides for radiotherapy. Actinium-225: PropertiesP, production, application,” Sov. Radiochem. 39, 481–490 (1997).

    Google Scholar 

  88. D. V. Filosofov et al., “A 111In–111mCd radionuclide generator,” Radiochemistry 44, 576–581 (2002).

    Article  Google Scholar 

  89. D. V. Filosofov, N. S. Loktionova, and F. A. Rösch, “44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals,” Radiochim. Acta 98, 149–156 (2010).

    Article  Google Scholar 

  90. M. Pruszyński et al., “Post-elution processing of 44Ti/44Sc generator-derived 44Sc for clinical application,” Appl. Radiat. Isot. 68, 1636–1641 (2010).

    Article  Google Scholar 

  91. A. Baimukhanova et al., “Production of the positron-emitting radionuclide 68Ga: The radiochemical scheme of radionuclide generator 68Ge→68Ga,” Chem. Bull. Kazakh Natl Univ. 89, 20–26 (2018).

    Article  Google Scholar 

  92. C. Müller et al., “Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer,” Eur. J. Nucl. Med. Mol. Imaging 46, 1919–1930 (2019).

    Article  Google Scholar 

  93. C. A. W. Villas Boas et al., “Stability in production and transport of 177Lu labeled PSMA,” Brazil. J. Radiat. Sci. 9, 1–12 (2021).

    Google Scholar 

  94. S. Milesz et al., “Characterization of DTPA complexes and conjugated antibodies of astatine,” J. Radioanal. Nucl. Chem. Letters. 137, 365–372 (1989).

    Article  Google Scholar 

  95. S. Milesz et al., “Preparation of astatine-labeled monoclonal antibodies,” Radiokhimiya 37, 253–257 (1995).

    Google Scholar 

  96. Yu. V. Norseyev and N. L. Shmakova, “Astatine-211: production, injection into monoclonal antibodies radiological effect, possible application to cancer treatment,” Nukleonika 40, 13–26 (1995).

    Google Scholar 

  97. S. Milesz, Yu. V. Norseyev, and Z. Szucz, “Method for producing astatine-211-labeled monoclonal antibodies,” USSR Patent No. 1695757 (1991).

  98. G. Anderegg et al., “Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications,” IUPAC Tech. Rep.: Pure App. Chem. 77, 1445–1495 (2005).

    Google Scholar 

  99. B. H. Miadalof, “The use of thin-layer chromatography in experimental xenobiology,” J. Liq. Chromatogr. 4, 931–953 (1981).

    Article  Google Scholar 

  100. C. O. Rock, S. Jackowski, and S. D. Shulman, “Imaging scanners for radiolabeled thin-layer chromatography,” BioChromatography 3, 127–130 (1988).

    Google Scholar 

  101. D. Abou et al., “MACROPA highly stable chelator of Radium-223 and functionalization attempts for targeted treatment of cancer,” J. Nucl. Med. 61, 587 LP – 587 (2020).

  102. R. Bauer et al., “The potential of perturbed angular correlation of gamma rays as a tool for dynamic studies of peptides/proteins,” Intl J. Radiat. Appl. Instrument. 42, 1015–1023 (1991).

    Article  Google Scholar 

  103. A. Jancso et al., “TDPAC and β-NMR applications in chemistry and biochemistry,” J. Phys. G 44, 64003 (2017).

    Article  Google Scholar 

  104. E. S. Kurakina et al., “Perturbed Angular Correlation as a tool to study precursors for radiopharmaceuticals,” Inorg. Chem. 59, 12209–12217 (2020).

    Article  Google Scholar 

  105. L. Hemmingsen and T. Butz, Perturbed Angular Correlations of γ-rays (PAC) Spectroscopy, Encyclopedia of Inorganic and Bioinorganic Chemistry (Wiley, New York, 2011).

    Google Scholar 

  106. D. V. Filosofov, “Radiochemical aspects of the application of the method of perturbed angular gamma-gamma correlations in studies of condensed matter using the example of 111In and 111mCd,” Candidate’s Dissertation in Chemistry (Moscow State University, Moscow, 2005).

  107. B. S. Mirzadeh, K. Kumar, and O. A. Gansow, “The chemical fate of 212Bi-DOTA formed by β-decay decay of 212Pb(DOTA)2-,” Radiochim. Acta 60, 1–10 (1993).

    Article  Google Scholar 

  108. L. G. Shpinkova et al., “Influence of electron capture after-effects on the stability of 111In(111Cd)-complexes with organic ligands”, Chem. Phys. 279, 255–263 (2002).

    Article  Google Scholar 

  109. R.E. Hain et al., “Electrophoresis cells modified for determination of labeled protein fractions,” Anal. Chem. 28, 544–545 (1956).

    Article  Google Scholar 

  110. T. K. Hung et al., “Investigation of astatine cation electromigration,” Radiochim. Acta 47, 105–108 (1989).

    Article  Google Scholar 

  111. F. Rösch et al., “Electromigration of carrier-free radionuclides. 6. Iodide and bromide complexes of carrier-free 201Tl(I) in aqueous solutions,” Isotopenpraxis Isotopes in Environmental and Health Studies 24, 383–386 (1988).

    Article  Google Scholar 

  112. F. Rösch et al., “Electromigration of carrier-free radionuclides. 7. 201Tl-Thallium (I) sulphate complexes in aqueous solutions,” Isotopenpraxis Isotopes in Environmental and Health Studies 24, 386–388 (1988).

    Article  Google Scholar 

  113. F. Rösch et al., “Electromigration of carrier-free radionuclides: 9. Protolysis of [131I] iodate in aqueous solutions,” J. Chromatogr. A 457, 362–365 (1988).

    Article  Google Scholar 

  114. F. Rösch et al., “Electromigration of carrier-free radionuclide ions: Bismuth complexes in aqueous solutions of oxalic, fumaric and succinic acids,” Talanta 34, 375–380 (1987).

    Article  Google Scholar 

  115. F. Rösch et al., “Electromigration of carrier-free radionuclides: 4. Oxalate and tartrate complexes of La(III) in aqueous,” J. Radioanal. Nucl. Chem. Articles 111, 319–327 (1987).

    Article  Google Scholar 

  116. F. Rösch et al., “Electromigration of carrier-free radionuclides: 11. Complex formation of 239Np(V) with oxalate, tartrate and sulphate in neutral inert electrolytes,” Radiochim. Acta 48, 205–212 (1989).

    Article  Google Scholar 

  117. F. Rösch et al., “Electromigration of carrier-free radionuclides 8. Hydrolysis of 249Cf (III) in aqueous solution,” Radiochim. Acta 47, 187–190 (1989).

    Article  Google Scholar 

  118. F. Rösch et al., “Electromigration of carrier-free radionuclides: 5. Ion mobilities and hydrolysis of Np(V) in aqueous perchlorate solutions,” Radiochim. Acta 42, 43–46 (1987).

    Article  ADS  Google Scholar 

  119. F. Rösch et al., “Electromigration of carrier-free radionuclides: 13. Ion mobilities and hydrolysis of 241Am-Am(III) in aqueous inert electrolytes,” J. Radioanal. Nucl. Chem. 134, 109–128 (1989).

    Article  Google Scholar 

  120. F. Rösch et al., “Electromigration of carrier-free radionuclides: 12. Reaction of 239Np(V) with acetate and citrate ligands in neutral solutions,” Radiochim. Acta 49, 29–34 (1990).

    Article  Google Scholar 

  121. F. Rösch et al., “Electromigration studies of carrier-free 239Np(V) in aqueous solutions,” Isotopenpraxis Isotopes in Environmental and Health Studies 26, 355–363 (1990).

    Article  Google Scholar 

  122. F. Rösch et al., “Electromigration of carrier-free radionuclides: 14. Complex formation of 241Am-Am(III) with oxalate and sulfate in aqueous solution,” J. Radioanal. Nucl. Chem. 140, 159–169 (1990).

    Article  Google Scholar 

  123. G. Bontchev, G. Bojikov, and P. Ivanov, “Investigation of the interaction between 111In3+ and DTPA in water by the electromigration analysis,” Scripta Scientifica Medica 35, 15–19 (2003).

    Google Scholar 

  124. P. I. Ivanov et al., “Study of the 111In-DTPA complex by the electromigration method,” Appl. Radiat. Isot. 58, 1–4 (2003).

    Article  Google Scholar 

  125. F. Rösch et al., “Elektromigration von γ-Radionukliden in homogenen wäßrigen Elektrolyten ohne Zusatz stabilisierender Träger,” Z. Chem. 27, 358–366 (2010).

    Article  Google Scholar 

  126. A. V. Stepanov and E. K. Korchesnaya, Electromigration Method in Inorganic Analysis (Methods of Analytical Chemistry) (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  127. G. M. Marinov et al., “Sorption of rare-earth elements and Ac on DN resin with HCl, HClO4, CH3COOH, CCl3COOH,” Solvent Extr. Ion Exch. 36, 459–469 (2018).

    Article  Google Scholar 

  128. G. Marinov et al., “Sorption of rare-earth elements and Ac on UTEVA resin in different acid solutions,” Solvent Extr. Ion Exch. 35, 280–291 (2017).

    Article  Google Scholar 

  129. G. M. Marinov et al., “Determination of distribution coefficients (Kd) of various radionuclides on UTEVA resin,” Radiochim. Acta 104, 735–742 (2016).

    Article  Google Scholar 

  130. J. Dadakhanov et al., “Sorption of various elements on ion-exchange resins in acetic media,” J. Radioanal. Nucl. Chem. 327, 1191–1199 (2021).

    Article  Google Scholar 

  131. N. Mirzayev et al., “Sorption of 60 elements on cation exchange resins in ammonium acetate solutions,” J. Radiat. Res. 5, 1–8 (2018).

    Google Scholar 

  132. N. Mirzayev et al., “Distribution coefficients of 60 elements on cation and anion-exchange resin in ammonium chloride solutions,” Solvent Extr. Ion Exch. 37, 473–487 (2019).

    Article  Google Scholar 

  133. E. Pomplun, “Auger electron spectra: The basic data for understanding the Auger effect,” Acta Oncologica 39, 673–679 (2000).

    Article  Google Scholar 

  134. G. Yu. Bayer, V. A. Khalkin, and H. Grosse-Rüken, “Fast radiochemical separations based on the Szilard-Chalmers effect in complexes of lanthanides with polyaminocarboxylic acids. 1. Separation of genetically related isobaric and isomeric pairs,” Preprint OIYaI R12-3886 (JINR, Dubna, 1968).

    Google Scholar 

  135. Yu. Ts. Oganessian and V. K. Utyonkov, “Superheavy nuclei from 48Ca-induced reactions,” Nucl. Phys. A 944, 62–98 (2015).

    Article  ADS  Google Scholar 

  136. K. P. Zhernosekov, D. V. Filosofov, and F. Rösch, “The Szilard-Chalmers effect in macrocyclic ligands to increase the specific activity of reactor-produced radiolanthanides: Experiments and explanations,” Radiochim. Acta 100, 669–674 (2012).

    Article  Google Scholar 

  137. G. Yu. Bayer et al., “Fast radiochemical separations based on the Szilard–Chalmers effect in complexes of lanthanides with polyaminocarboxylic acids. 2. Complex compounds of lanthanides with diethylenetriaminepentaacetic acid (DTPA) used as targets for irradiation with 660 MeV protons,” Preprint OIYaI R12-3887 (JINR, Dubna, 1968).

    Google Scholar 

  138. D. V. Filosofov et al., “Behavior of actinium, alkaline, and rare earth elements in Sr-Resin/mineral acid systems,” Solvent Extr. Ion Exch. 33, 496–509 (2015).

    Article  Google Scholar 

  139. A. V. Rakhimov et al., “Development of methods for the preparation of radiopure 82Se sources for the SuperNEMO neutrinoless double-beta decay experiment,” Radiochim. Acta 108, 87–97 (2020).

    Article  Google Scholar 

  140. A. V. Rakhimov et al., “Purification of selenium from thorium, uranium, radium, actinium and potassium impurities for low background measurements,” Radiochim. Acta 101, 653–659 (2013).

    Article  Google Scholar 

  141. N. V. Aksenov et al., “Anion exchange behavior of Ti, Zr, Hf, Nb and Ta as homologues of Rf and Db in mixed HF-acetone solutions,” AIP Conf. Proc. 1224, 279–284 (2010).

    Article  ADS  Google Scholar 

  142. D. Schumann et al., “Sorption behaviour of W, Hf, Lu, U, and Th on ion exchangers from HCI/H2O2 Solutions. Model experiments for chemical studies of Seaborgium (Sg),” Radiochim. Acta 80, 1–5 (1998).

    Article  Google Scholar 

  143. D. Schumann et al., “Sorption behaviour of uranium on cation and anion exchange resins from HCl/HF-containing aqueous solutions: Model experiments for the determination of chemical properties of element 106 (Seaborgium),” Radiochim. Acta 79, 217–220 (1997).

    Article  Google Scholar 

  144. D. Schumann et al., “Sorption of subgroup IV, V and VI elements on ion exchangers from HCl/HF solutions. Model experiments for chemical studies of the elements 105 and 106 in aqueous solution,” Radiochim. Acta 72, 137–142 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Peter Kunz, our colleague from TRIUMF, for the theoretical calculation of radionuclide yields with Geant4 when irradiating the tantalum target (Fig. 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Baimukhanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filosofov, D.V., Baimukhanova, A.E., Kurakina, E.S. et al. Radiochemical Investigations for Radiopharmaceutical Nuclear Medicine at JINR Laboratory of Nuclear Problems. Phys. Part. Nuclei 54, 321–363 (2023). https://doi.org/10.1134/S106377962302003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377962302003X

Navigation