Skip to main content
Log in

First Observation of Diffractive Processes in Proton-Lead Collisions at the LHC with the CMS Detector

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We present the first measurements of diffraction in \(\sqrt {{{s}_{{NN}}}} = 8.16\) proton-lead collisions at LHC with CMS. The very large angular coverage of CMS is used to tag rapidity gaps on both the proton-going and lead-going sides and to identify both pomeron-lead and pomeron-proton topologies. Since the previous highest energy measurement of these processes was at \(\sqrt {{{s}_{{NN}}}} = 29.1\), the obtained data provide essentially unique information. The rapidity gap distributions are not only sensitive to the diffractive parton distributions of nuclei but also provide important information for modeling cosmic ray collisions. The results are compared to the predictions from the EPOS-LHC, QGSJET II and HIJING event generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. N. Gribov, “Possible asymptotic behavior of elastic scattering,” JETP Lett. 41, 667 (1961).

    MathSciNet  Google Scholar 

  2. G. F. Chew and S. C. Frautschi, “Principle of equivalence for all strongly interacting particles within the S matrix framework,” Phys. Rev. Lett. 7, 394 (1961).

    Article  ADS  Google Scholar 

  3. G. Aad et al. (ATLAS Collab.), “Rapidity gap cross sections measured with the ATLAS detector in pp collisions at √s = 7 TeV,” Eur. Phys. J. C 72, 1926 (2012); arXiv:1201.2808 [hep-ex].

    Article  ADS  Google Scholar 

  4. V. Khachatryan et al. (CMS Collab.), “Measurement of diffraction dissociation cross sections in pp collisions at √s = 7 TeV,” Phys. Rev. D 92, 012003 (2015); arXiv: 1503.08689.

  5. G. Antchev et al. (TOTEM Collab.), “First measurement of the total proton-proton cross section at the LHC energy of √s = 7 TeV,” Eur. Phys. Lett. 96, 21002 (2011); arXiv:1110.1395 [hep-ex].

  6. G. Antchev et al. (TOTEM Collab.), “Measurement of proton-proton elastic scattering and total cross-section at √s = 7 TeV,” Eur. Phys. Lett. 101, 21002 (2013).

    Article  ADS  Google Scholar 

  7. G. Antchev et al. (TOTEM Collab.), “First measurement of elastic, inelastic and total cross-section at √s = 13 TeV by TOTEM and overview of cross-section data at LHC energies,” Eur. Phys. J. C 79, 103 (2019); arXiv: 1712.06153.

  8. F. E. Low, “A model of the bare Pomeron,” Phys. Rev. D 12, 163 (1975).

    Article  ADS  Google Scholar 

  9. S. Nussinov, “Colored quark version of some hadronic puzzles,” Phys. Rev. Lett. 34, 1286 (1975).

    Article  ADS  Google Scholar 

  10. V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, “On the Pomeranchuk singularity in asymptotically free theories,” Phys. Lett. B 60, 50 (1975).

    Article  ADS  Google Scholar 

  11. A. B. Kaidalov, “Diffractive production mechanisms,” Phys. Rept. 50, 157 (1979).

    Article  ADS  Google Scholar 

  12. A. Donnachie and P. V. Landshoff, “Elastic scattering and diffraction dissociation,” Nucl. Phys. B 244, 322 (1984).

    Article  ADS  Google Scholar 

  13. K. Akiba et al. (LHC Forward Physics Working Group Collab.), “LHC forward physics,” J. Phys. G 43, 110201 (2016); arXiv:1611.05079.

  14. V. N. Gribov, “Glauber corrections and the interaction between high-energy hadrons and nuclei,” Sov. Phys. JETP 29, 483 (1969).

    ADS  Google Scholar 

  15. R. Luna, A. Zepeda, C. A. Garcia Canal, and S. J. Sciutto, “Influence of diffractive interactions on cosmic ray air showers,” Phys. Rev. D 70, 114034 (2004); arXiv:hep-ph/0408303.

    Article  ADS  Google Scholar 

  16. “First measurement of the forward rapidity gap distribution in pPb collisions at \(\sqrt {{{s}_{{{\text{NN}}}}}} \) = 8.16 TeV,” Report CMS-PAS-HIN-18-019 (CERN, Geneva, 2020).

  17. T. Akesson et al. (HELIOS Collab.), “Diffraction dissociation of nuclei in 450 GeV/c proton-nucleus collisions,” Z. Phys. C 49, 355 (1991).

    Article  Google Scholar 

  18. S. Chatrchyan et al. (CMS Collab.), “The CMS experiment at the CERN LHC,” J. Instrum. 3, S08004 (2008).

    Google Scholar 

  19. O. Surányi, “Performance of the CMS zero degree calorimeters in the 2016 pPb run,” J. Phys. Conf. Ser. 1162, 012005 (2019).

    Article  Google Scholar 

  20. A. J. Baltz, “The physics of ultraperipheral collisions at the LHC,” Phys. Rept. 458, 1 (2008); arXiv:0706.3356 [nucl-ex].

  21. V. Khachatryan et al. (CMS Collab.), “Coherent J/Ψ photoproduction in ultraperipheral PbPb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV with the CMS experiment,” Phys. Lett. B 772, 489 (2017); arXiv:1605.06966.

  22. A. M. Sirunyan et al. (CMS Collab.), “Measurement of exclusive ρ(770)0 photoproduction in ultraperipheral pPb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 5.02 TeV,” Eur. Phys. J. C 79, 702 (2019); arXiv:1902.01339.

  23. A. M. Sirunyan et al. (CMS Collab.), “Measurement of exclusive ϒ photoproduction from protons in pPb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 5.02 TeV,” Eur. Phys. J. C 79, 277 (2019); arXiv:1809.11080.

  24. A. M. Sirunyan et al. (CMS Collab.), “Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 5.02 TeV,” Phys. Lett. B 797, 134826 (2019); arXiv: 1810.04602.

  25. T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, “EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider,” Phys. Rev. C 92, 034906 (2015); arXiv: 1306.0121 [hep-ph] (2013).

  26. S. Ostapchenko, “Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model,” Phys. Rev. D 83, 014018 (2011); arXiv: 1010.1869 [hep-ph].

    Article  ADS  Google Scholar 

  27. X. N. Wang and M. Gyulassy, “HIJING: A Monte Carlo model for multiple jet production in pp, pA and AA collisions,” Phys. Rev. D 44, 3501 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sosnov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosnov, D. First Observation of Diffractive Processes in Proton-Lead Collisions at the LHC with the CMS Detector. Phys. Part. Nuclei 53, 393–397 (2022). https://doi.org/10.1134/S1063779622020782

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020782

Navigation