Skip to main content
Log in

Overview of Hadron and Jet Production Results from ALICE

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The ALICE experiment is designed to study the hot and dense medium, the quark-gluon plasma (QGP), produced in ultra-relativistic heavy-ion collisions at the LHC. Measuring the spectrum of hadrons produced in high-\({{Q}^{2}}\) scattering processes in these collisions provides the possibility to explore one of the most spectacular effects – parton energy loss in QGP. By studying several observables with high-energy light-flavour, heavy-flavour hadrons, and jets in pp, p–Pb and Pb–Pb collision systems, the properties of hot QCD matter can be explored in detail. In these proceedings we present an overview of recent ALICE results on high-\({{p}_{{\text{T}}}}\) hadron and jet production in pp, p–Pb and Pb–Pb collisions at LHC energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. B. B. Abelev et al. (ALICE Collab.), “Performance of the ALICE experiment at the CERN LHC,” Int. J. Mod. Phys. A 29, 1430044 (2014); arXiv:1402.4476 [nucl-ex].

    Article  ADS  Google Scholar 

  2. R. Aamodt et al. (ALICE Collab.), “The ALICE experiment at the CERN LHC,” J. Instrum. 3, S08002 (2008).

    Google Scholar 

  3. J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events,” Nucl. Instrum. Methods Phys. Res., Sect. A 622, 316–367 (2010); arXiv:1001.1950 [physics.ins-det].

  4. F. Carnesecchi et al. (ALICE Collab.), “Performance of the ALICE Time-Of-Flight detector at the LHC.” J. Instrum. 14, C06023 (2019); arXiv:1806.03825.

  5. S. Acharya et al. (ALICE Collab.), “The ALICE Transition Radiation Detector: Construction, operation, and performance,” Nucl. Instrum. Methods Phys. Res., Sect. A 881, 88–127 (2018); arXiv:1709.02743.

  6. G. De Cataldo et al. (ALICE Collab.), “Performance of the high momentum particle identification detector of ALICE during the LHC run period 2015–2016,” Nucl. Instrum. Methods Phys. Res., Sect. A 876, 62—64 (2017).

    Google Scholar 

  7. U. Abeysekara et al. (ALICE EMCal Collab.), “ALICE EMCal physics performance report (2010)”; arXiv: 1008.0413 [physics.ins-det].

  8. G. Dellacasa et al. (ALICE Collab.), “ALICE technical design report of the photon spectrometer (PHOS),” CERN-LHCC-99-04 (1999).

  9. B. Abelev et al. (ALICE Collab.), “Neutral pion and η meson production in proton–proton collisions at \(\sqrt {{{s}_{{NN}}}} \) = 0.9 TeV and \(\sqrt {{{s}_{{NN}}}} \) = 7 TeV,” Phys. Lett B 717, 162—172 (2012); arXiv:1205.5724 [hep-ex].

    Article  ADS  Google Scholar 

  10. B. B. Abelev et al. (ALICE Collab.), “Neutral pion production at midrapidity in pp and Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV,” Eur. Phys. J. C 74, 3108 (2014); arXiv: 1405.3794 [nucl-ex].

    Article  Google Scholar 

  11. S. Acharya et al. (ALICE Collab.), “Production of π0 and η mesons up to high transverse momentum in pp collisions at 2.76 TeV,” Eur. Phys. J. C 77, 339 (2017). [Erratum: Eur. Phys. J. C 77, 586 (2017)]; arXiv: 1702.00917.

  12. S. Acharya et al. (ALICE Collab.), “π0 and η meson production in proton-proton collisions at \(\sqrt {{{s}_{{NN}}}} \) = 8 TeV,” Eur. Phys. J. C 78, 263 (2018); arXiv: 1708.08745.

  13. R. Aamodt et al. (ALICE Collab.), “Production of pions, kaons and protons in pp collisions at \(\sqrt {{{s}_{{NN}}}} \) = 900 GeV with ALICE at the LHC,” Eur. Phys. J. C 71, 1655 (2011); arXiv:1101.4110 [hep-ex].

    Article  ADS  Google Scholar 

  14. J. Adam et al. (ALICE Collab.), “Measurement of pion, kaon and proton production in proton-proton collisions at \(\sqrt {{{s}_{{NN}}}} \) = 7 TeV,” Eur. Phys. J. C 75, 226 (2015); arXiv:1504.00024.

  15. S. Acharya et al. (ALICE Collab.), “Measurement of D 0, D +, D*+ and \(D_{s}^{ + }\) production in pp collisions at \(\sqrt {{{s}_{{NN}}}} \) = 5.02 TeV with ALICE,” Eur. Phys. J. C 79, 388 (2019); arXiv:1901.07979.

  16. S. Acharya et al. (ALICE Collab.), “Charged-particle production as a function of multiplicity and transverse spherocity in pp collisions at \(\sqrt {{{s}_{{NN}}}} \) = 5.02 and 13 TeV,” Eur. Phys. J. C 79, 857 (2019); arXiv:1905.07208.

  17. A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I. Maldonado Cervantes, and G. Paić, “Color reconnection and flowlike patterns in pp collisions,” Phys. Rev. Lett. 111, 042001 (2013); arXiv:1303.6326 [hep-ph].

    Article  ADS  Google Scholar 

  18. T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2,” Comput. Phys. Commun. 191, 159—177 (2015); arXiv:1410.3012 [hep-ph].

    Article  ADS  Google Scholar 

  19. C. Bierlich, G. Gustafson, L. Lönnblad, and A. Tarasov, “Effects of overlapping strings in pp collisions,” J. High Energy Phys. 03, 148 (2015); arXiv:1412.6259 [hep-ph].

    Article  Google Scholar 

  20. V. Khachatryan et al. (CMS Collab.), “Charged-particle nuclear modification factors in PbPb and pPb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 5.02 TeV,” J. High Energy Phys. 04, 039 (2017); arXiv:1611.01664.

  21. J. Adam et al. (ALICE Collab.), “Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at \(\sqrt {{{s}_{{{\text{NN}}}}}} \) = 5.02 TeV,” Phys. Lett. B 760, 720–735 (2016); arXiv:1601.03658.

  22. S. Acharya et al. (ALICE Collab.), “Measurement of prompt D 0, D +, D*+, and D+ S production in p-Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 5.02 TeV,” J. High Energy Phys. 12, 092 (2019); arXiv:1906.03425.

  23. J. Adam et al. (ALICE Collab.), “Direct photon production in Pb-Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV,” Phys. Lett. B 754, 235—248 (2016); arXiv:1509.07324.

  24. Y. L. Dokshitzer and D. Kharzeev, “Heavy quark colorimetry of QCD matter,” Phys. Lett. B 519, 199–206 (2001); arXiv:hep-ph/0106202.

    Article  ADS  Google Scholar 

  25. M. Djordjevic, M. Djordjevic, and B. Blagojevic, “RHIC and LHC jet suppression in non-central collisions,” Phys. Lett. B 737, 298–302 (2014); arXiv: 1405.4250 [nucl-th].

    Article  ADS  Google Scholar 

  26. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D. Schiff, “Radiative energy loss and p T broadening of high-energy partons in nuclei,” Nucl. Phys. B 484, 265–282 (1997); arXiv:hep-ph/9608322.

    Article  ADS  Google Scholar 

  27. J. Uphoff, O. Fochler, Z. Xu, and C. Greiner, “Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions,” J. Phys. G 42, 115106 (2015); arXiv:1408.2964 [hep-ph].

    Article  ADS  Google Scholar 

  28. A. Beraudo, A. De Pace, M. Monteno, M. Nardi, and F. Prino, “Heavy flavors in heavy ion collisions: Quenching, flow and correlations,” Eur. Phys. J. C 75, 121 (2015); arXiv:1410.6082 [hep-ph].

    Article  ADS  Google Scholar 

  29. W. Ke, Y. Xu, and S. A. Bas, “Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter,” Phys. Rev. C 98, 064901 (2018); arXiv:1806.08848.

  30. M. He, R. J. Fries, and R. Rapp, “Heavy flavor at the large hadron collider in a strong coupling approach,” Phys. Lett. B 735, 445—450 (2014); arXiv:1401.3817 [nucl-th].

    Article  ADS  Google Scholar 

  31. T. Song, H. Berrehrah, D. Cabrera, W. Cassing, and E. Bratkovskaya, “Charm production in Pb + Pb collisions at energies available at the CERN Large Hadron Collider,” Phys. Rev. C 93, 034906 (2016); arXiv: 1512.00891.

  32. S. Plumari, V. Minissale, S. K. Das, G. Coci, and V. Greco, “Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC,” Eur. Phys. J. C 78, 348 (2018); arXiv:1712.00730.

  33. M. Nahrgang, J. Aichelin, P. B. Gossiaux, and K. Werner, “Influence of hadronic bound states above Tc on heavy-quark observables in Pb + Pb collisions at the CERN Large Hadron Collider,” Phys. Rev. C 89, 014905 (2014); arXiv:1305.6544 [hep-ph].

    Article  ADS  Google Scholar 

  34. Z. B. Kang, F. Ringer, and I. Vitev, “The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production,” J. High Energy Phys. 10, 125 (2016); arXiv:1606.06732.

  35. S. Acharya et al. (ALICE Collab.), “Measurements of inclusive jet spectra in pp and central Pb-Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 5.02 TeV,” Phys. Rev. C 101, 034911 (2020); arXiv:1909.09718.

  36. X. Liu, S. O. Moch, and F. Ringer, “Phenomenology of single-inclusive jet production with jet radius and threshold resummation,” Phys. Rev. D 97, 056026 (2018); arXiv:1801.07284.

  37. S. Alioli, K. Hamilton, P. Nason, C. Oleari, and E. Re, “Jet pair production in POWHEG,” J. High Energy Phys. 04, 081 (2011); arXiv:1012.3380 [hep-ph].

  38. J. Casalderrey-Solana, Z. Hulcher, G. Milhano, D. Pablos, and K. Rajagopal, “Simultaneous description of hadron and jet suppression in heavy-ion collisions,” Phys. Rev. C 99, 051901 (2019); arXiv: 1808.07386.

  39. S. Acharya et al. (ALICE Collab.), “Measurement of the production of charm jets tagged with D 0 mesons in pp collisions at \(\sqrt {{{s}_{{NN}}}} \) = 7 TeV,” J. High Energy Phys. 08, 133 (2019); arXiv:1905.02510.

  40. S. Acharya et al. (ALICE Collab.), “Medium modification of the shape of small radius jets in central Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV,” J. High Energy Phys. 10, 139 (2018); arXiv:1807.06854.

Download references

Funding

This research was supported by the Russian Science Foundation grant 17-72-20234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Peresunko.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peresunko, D. Overview of Hadron and Jet Production Results from ALICE. Phys. Part. Nuclei 53, 316–325 (2022). https://doi.org/10.1134/S1063779622020666

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020666

Navigation