Skip to main content
Log in

Hadron Production in High-Energy Particle Collisions

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Based on the quark-hadron duality concept the hadronization of the deconfined matter arising in high-energy particle collisions is considered. The number of generated hadrons is shown to be entirely determined by the exact non-equilibrium Green’s functions of partons in the deconfined matter and the vertex function governed by the probability of the confinement-deconfinement phase transition. Compactifying the standard (3 + 1) chromodynamics into \({\text{QC}}{{{\text{D}}}_{{xy}}} + {\text{QC}}{{{\text{D}}}_{{zt}}}\), the rate of hadrons produced in particle collisions with respect to both the rapidity and \({{p}_{{\text{T}}}}\) distributions is derived in the flux tube approach. Provided that the hadronization is the first order phase transition, the hadron rate is derived in the explicit form. The obtained rate is found to depend strongly on the energy of the colliding particles, number of tubes, hadron mass as well as on the temperature of the confinement-deconfinement phase transition. In the case of the pion production in \(pp\) collisions we obtain a good agreement to the experimental results on the pion yield with respect to both the rapidity and \({{p}_{{\text{T}}}}\) distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. I. Abelev et al. (STAR Collab.), “Strange particle production in pp collisions at \(\sqrt s = 200\,\,{\text{GeV}}\),” Phys. Rev. C 75, 064901 (2007).

    Article  ADS  Google Scholar 

  2. A. Adare et al. (PHENIX Collab.), “Nuclear modification factors of \(\phi \) mesons in d + Au, Cu + Cu, and Au + Au collisions at \(\sqrt s = 200\,\,{\text{GeV}}\),” Rev. C 83, 024909 (2011).

    Google Scholar 

  3. G. Aad et al. (ATLAS Collab.), “Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC,” New J. Phys. 13, 053033 (2011).

    Article  ADS  Google Scholar 

  4. V. Khachatryan et al. (CMS Collab.), “Charged particle transverse momentum spectra in pp collisions at \(\sqrt s = 0.9\;{\text{and}}\;7\,\,{\text{TeV}}\),” J. High Energy Phys. 08, 086–124 (2011).

  5. K. Aamodt et al. (ALICE Collab.), “Transverse momentum spectra of charged particles in proton-proton collisions at \(\sqrt s = 900\,\,{\text{GeV}}\) with ALICE at the LHC,” Phys. Lett. B 693, 53—68 (2010).

    Article  ADS  Google Scholar 

  6. N. Abgrall et al (NA61 Collab.), “Measurement of negatively charged pion spectra in inelastic p + p interactions at \({{p}_{{{\text{lab}}}}}\) = 20, 31, 40, 80 and 158 GeV/c,” Eur. Phys. J. C 74, 2793 (2014).

    Article  ADS  Google Scholar 

  7. C. Y. Wong. Introduction to High-Energy Heavy-Ion Collisions (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  8. S. Dalley, “Adjoint QCD in two-dimensions and non-abelian Schwinger mechanism,” Phys. Lett. 418, 160—171 (1998).

    Article  Google Scholar 

  9. B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand, “Parton fragmentation and string dynamics,” Phys. Rep. 97, 31—145 (1983).

    Article  ADS  Google Scholar 

  10. L. McLerran, “The color glass condensate and small-x physics,” Lecture Notes Phys. 583, 291—316 (2002).

    Article  ADS  Google Scholar 

  11. L. McLerran, “CGC and the Glasma: Two lectures at the Yukawa Institute,” Prog. Theor. Phys. Suppl. 187, 17—30 (2011).

    Article  ADS  Google Scholar 

  12. A. V. Koshelkin and C.-Y. Wong, “The compactification of \({\text{QC}}{{{\text{D}}}_{4}}\) to \({\text{QC}}{{{\text{D}}}_{2}}\) in a flux tube,” Phys. Rev. D 86, 125026 (2012).

    Article  ADS  Google Scholar 

  13. W. Melnitchouk, R. Ent, and C. E. Keppel, “Quark-hadron duality in electron scattering,” Phys. Rep. 406, 127—301 (2005).

    Article  ADS  Google Scholar 

  14. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, 1980).

    Google Scholar 

  15. A. Casher, J. Kogut, and L. Susskind, “Vacuum polarization and the absence of free quarks,” Phys. Rev D 10, 732—745 (1974).

    Article  ADS  Google Scholar 

  16. J. Schwinger, “Gauge invariance and mass. II”, Phys.Rev. 12, 2425–2429 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Witten, “Nonabelian bosonization in two dimensions,” Commun. Math. Phys. 92, 455—472 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  18. R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, “Hadronization in heavy-ion collisions: Recombination and fragmentation of partons,” Phys. Rev. Lett. 90, 202303 (2003).

    Article  ADS  Google Scholar 

  19. R. C. Hwa and C. B. Yang, “Recombination of shower partons at high \({{p}_{{\text{T}}}}\) in heavy-ion collisions,” Phys. Rev. C 70, 024905(2004).

    Article  ADS  Google Scholar 

  20. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (Pergamon Press, Oxford, 1979).

    Google Scholar 

  21. V. V. Slezov, Kinetics of First-Order Phase Transitions (Wiley-VCH, Weinheim, 2009).

    Book  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1971).

    MATH  Google Scholar 

  23. S. R. de Groot, W. A. van Leeuwen, and Ch. G. van Weert, Relativistic Kinetic Theory (North-Holland, Amsterdam, 1980).

    Google Scholar 

  24. E. Fermi, “High energy nuclear events,” Prog. Theor. Phys. 5, 570583 (1950).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Koshelkin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshelkin, A.V. Hadron Production in High-Energy Particle Collisions. Phys. Part. Nuclei 53, 233–241 (2022). https://doi.org/10.1134/S1063779622020411

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020411

Navigation