Skip to main content
Log in

The Chiral Medium in a Generalized Sigma Model and the Chiral Perturbation Theory

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The possibility of the formation of a phase with local parity violation(LPV) in a chiral medium in central collisions of heavy ions at high energies is investigated. The obtained restrictions are compared to parameters of the generalized Linear-Sigma Model (LSM) for light mesons and structural constants of the interaction of the chiral Gasser–Leutweiler (GL) Lagrangian for the Chiral Perturbation Theory (ChPT) in a chiral medium. A number of relations are obtained for the low-energy structural coupling constants of the chiral GL Lagrangian and the corresponding parameter interaction in the generalized Sigma Model. Expressions for the decay constant of the pion and the mass of the a0 meson in unbalanced chiral environment are given. A process (signature) in a chiral medium is described, which can serve as an experimental indication of the existence a phase with LPV, which is manifested in the suppression of the flux of muons in decays of charged pions in a fireball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. E. Kharzeev, “The chiral magnetic effect and anomaly-induced transport,” Prog. Part. Nucl. Phys. 75, 133–151 (2014).

    Article  ADS  Google Scholar 

  2. D. E. Kharzeev, “Parity violation in hot QCD: Why it can happen, and how to look for it,” Phys. Lett. B 633, 260–264 (2006), D. E. Kharzeev, “Topologically induced local P and CP violation in QCD × QED,” Ann. Phys. (NY) 325, 205–218 (2010), D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, “The effects of topological charge change in heavy ion collisions: Event by event P and CP violation”, Nucl. Phys. A 803, 227–253 (2008);

    Article  ADS  Google Scholar 

  3. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “The chiral magnetic effect,” Phys. Rev. D 78, 074033 (2008);

    Article  ADS  Google Scholar 

  4. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “Electric-current susceptibility and the chiral magnetic effect,” Nucl. Phys. A 836, 311–336 (2010).

    Article  ADS  Google Scholar 

  5. A. A. Andrianov and D. Espriu, “On the possibility of P-violation at finite baryon-number densities,” Phys. Lett. B 663, 450–455 (2008), A. A. Andrianov, V. A. Andrianov, and D. Espriu, “Spontaneous P-violation in QCD in extreme conditions,” Phys. Lett. B 678, 416–421 (2009).

    Article  ADS  Google Scholar 

  6. A. A. Andrianov, V. A. Andrianov, D. Espriu, and X. Planells, “Abnormal dilepton yield from parity breaking in dense nuclear matter,” AIP Conf. Proc. 1343, 450–452 (2011).

    Article  ADS  Google Scholar 

  7. A. Bzdak, V. Koch, and J. F. Liao, “Topological charge fluctuations in the glasma,” Lect. Notes Phys. 871, 503–536 (2013); H. Xu-Guang, “Chiral magnetic effect in heavy ion collisions,” Rep. Prog. Phys. 79, 076302 (2016); L. Jinfeng, “Chiral magnetic effect in heavy ion collisions,” Nucl. Phys A 956, 99–107 (2016);

    Article  Google Scholar 

  8. H. Xu-Guang, “Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review,” Rep. Prog. Phys. 79, 076302 (2016); W. Gang, “Experimental overview of the search for chiral effects at RHIC,” J. Physics: Conf. Series 779, 012013 (2017).

    Google Scholar 

  9. Md. Rihan Haque, “Measurements of the chiral magnetic effect in PbPb collisions with ALICE,” Nucl. Phys. A 982, 543–546 (2019).

    Article  ADS  Google Scholar 

  10. I. Tserruya, “Exotic meson decays and polarization asymmetry in hadron,” Landölt-Bernstein 23, 176–180 (2010).

    ADS  Google Scholar 

  11. A. A. Andrianov, V. A. Andrianov, D. Espriu, and X. Planells, “Abnormal enhancement of dilepton yield in central heavy-ion collisions from local parity breaking,” Theor. Math. Phys. 170, 17–25 (2012); A. A. Andrianov, V. A. Andrianov, “Bosonization of the meson sector of QCD and parity breaking in strong interactions,” Theor. Math. Phys. 185, 1370–1382 (2015).

    Article  Google Scholar 

  12. A. A. Andrianov, V. A. Andrianov, D. Espriu, and X. Planells, “Dilepton excess from local parity breaking in baryon matter,” Phys. Lett. B 710, 230–235 (2012); A. A. Andrianov, V. A. Andrianov, D. Espriu, and X. Planells, “Implications of local parity breaking in heavy ion collisions,” Proc. Sci. QFTHEP 025 (2013); A. A. Andrianov, V. A. Andrianov, D. Espriu, and X. Planells, “Analysis of dilepton angular distributions in a parity breaking medium,” Phys. Rev. D 90, 034024 (2014).

    Article  ADS  Google Scholar 

  13. A. Adare et al. (PHENIX Collab.), “Detailed measurement of the e+e pair continuum in p + p and Au + Au collisions at √s NN = 200 GeV and implications for direct photon,” Phys. Rev. C 81, 034911 (2010).

    Article  ADS  Google Scholar 

  14. K. Fukushima and T. Hatsuda, “The phase diagram of dense QCD,” Rept. Prog. Phys. 74, 014001 (2011).

    Article  ADS  Google Scholar 

  15. A. A. Andrianov, V. A. Andrianov, and D. Espriu, “QCD with chiral chemical potential: Models versus lattice,” Acta Phys. Polon. Supp. 9, 515–521 (2016); A. A. Andrianov, V. A. Andrianov, and D. Espriu, “Decays of light mesons triggered by chiral chemical potential,” Acta Phys. Polon. Supp. 10, 977–982 (2017).

    Article  Google Scholar 

  16. J. Gasser and H. Leutwyler, “Chiral perturbation theory to one loop,” Ann. Phys. (N.Y.) 158, 142–210 (1984); J. Gasser and H. Leutwyler, “Chiral perturbation theory: Expansions in the mass of the strange quark,” Nucl. Phys.B 250, 465–516 (1985); J. Bijnens and G. Ecker, “Mesonic low-energy constants,” Annu. Rev. Nucl. Part. Sci. 64, 149–174 (2014).

    Article  Google Scholar 

  17. R. Kaiser and H. Leutwyler, “Large N(c) in chiral perturbation theory,” Eur. Phys. J. C 17, 623–649 (2000).

    Article  ADS  Google Scholar 

  18. A. A. Andrianov, D. Espriu, and X. Planells, “An effective QCD Lagrangian in the presence of an axial chemical potential,” Eur. Phys. J. C 73, 2294 (2013).

    Article  ADS  Google Scholar 

  19. A. A. Andrianov, V. A. Andrianov, D. Espriu, A. V. Iakubovich, and A. E. Putilova “Exotic meson decays in the environment with chiral imbalance,” EPJ Web Conf. 158, 03012 (2017); arXiv:1710.01760v1 [hep-ph] (2017).

  20. V. V. Braguta et al., “Study of QCD phase diagram with non-zero chiral chemical potential,” Phys. Rev. D 93, 034509 (2016); V. V. Braguta and A. Yu. Kotov, “Catalysis of dynamical chiral symmetry breaking by chiral chemical potential,” Phys. Rev. D 93, 105025 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  21. P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 083C01 (2020).

  22. M. Kawaguchi, M. Harada, S. Matsuzaki, and R. M. Ouyang, “Charged pions tagged with polarized photons probing strong CP violation in a chiral-imbalance medium,” Phys. Rev. C 95, 065204 (2017).

    Article  ADS  Google Scholar 

  23. A. A. Andrianov, V. A. Andrianov, D. Espriu, A. V. Iakubovich, and A. E. Putilova “Chiral imbalance in hadron matter: Its manifestation in photon polarization asymmetries,” Phys. Part. Nucl. Lett. 16, 493–497 (2019).

    Article  Google Scholar 

  24. J. Wess and B. Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B 37, 95 (1971); E. Witten, “Global aspects of current algebra,” Nucl. Phys. B 223, 422 (1983);

    Article  ADS  Google Scholar 

  25. A. A. Andrianov, V. A. Andrianov, V. Yu. Novozhilov, and Yu. V. Novozhilov, “Effective Lagrangian for pseudoscalar mesons, condensates, and quark spectrum asymmetry,” Theor. Math. Phys. 70, 43 (1987).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the organizers of the LXX International Conference “NUCLEUS 2020,” “Nuclear physics and elementary particle physics: Nuclear physics technologies” for the opportunity to present the results of our research.

Funding

The preparation of this work was supported by a grant of the Russian Science Foundation no. 21-12-00020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Andrianov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianov, V.A., Andrianov, A.A. & Espriu, D. The Chiral Medium in a Generalized Sigma Model and the Chiral Perturbation Theory. Phys. Part. Nuclei 53, 111–116 (2022). https://doi.org/10.1134/S1063779622020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020083

Navigation