Skip to main content
Log in

Scalar field, nucleon structure and relativistic chiral theory for nuclear matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The work that Peter Schuck and I carried out during the nineties in collaboration with the Lyon and Darmstadt theory groups is summarized. I retrace how our theoretical developments combined with experimental results concerning the in-medium modification of the pion-pion interaction allowed a clarification of the chiral status of the sigma meson introduced in relativistic theories of nuclear matter. This enabled us to build a relativistic chiral theory, now called the chiral confining model of nuclear matter, which includes the effect of the nucleon substructure, namely the response of the nucleon to the nuclear scalar field generating an efficient and natural contribution to the saturation mechanism. Using parameters from a QCD-connected version of the chiral confining model, I describe the relative roles of the chiral scalar field and two-pion (or two-rho) exchange for the in-medium NN attractive interaction and the associated sources of three-body interactions needed for the saturation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript has no associated data. This is a theoretical study and no experimental data.]

References

  1. P. Schuck, W. Nörenberg, G. Chanfray, Zeit. fur Phys. A330, 119 (1988)

    ADS  Google Scholar 

  2. G. Chanfray, P. Schuck, W. Nörenberg, Nucl. Phys. A 519, 311c (1990)

    ADS  Google Scholar 

  3. G. Chanfray, Z. Aouissat, P. Schuck, W. Nörenberg, Phys. Lett. B 256, 325 (1991)

    ADS  CAS  Google Scholar 

  4. G. Chanfray, P. Schuck, Nucl. Phys. A 545, 271c (1992)

    ADS  Google Scholar 

  5. G. Chanfray, P. Schuck, Nucl. Phys. A 555, 329 (1993)

    ADS  Google Scholar 

  6. Z. Aouissat, P. Schuck, G. Chanfray, Mod. Phys. Lett. A 8, 1379 (1993)

    ADS  CAS  Google Scholar 

  7. Z. Aouissat, R. Rapp, G. Chanfray, P. Schuck, J. Wambach, Nucl. Phys. A 581, 471 (1995)

    ADS  Google Scholar 

  8. R. Rapp, J.W. Durso, Z. Aouissat, G. Chanfray, O. Krehl, P. Schuck, J. Speth, J. Wambach, Phys. Rev. C 59, R1237 (1999)

    ADS  CAS  Google Scholar 

  9. Z. Aouissat, G. Chanfray, P. Schuck, J. Wambach, Phys. Rev. C 61, 12202 (2000)

    ADS  Google Scholar 

  10. G. Chanfray, R. Rapp, J. Wambach, Phys. Rev. Lett. 76, 368 (1996)

    ADS  CAS  PubMed  Google Scholar 

  11. R. Rapp, G. Chanfray, J. Wambach, Nucl. Phys. A 617, 472 (1997)

    ADS  Google Scholar 

  12. M. Urban, M. Buballa, R. Rapp, J. Wambach, Nucl. Phys. A 673, 357 (2000)

    ADS  Google Scholar 

  13. R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)

    CAS  Google Scholar 

  14. H. van Hees, R. Rapp, Phys. Rev. Lett. 97, 102301 (2006)

    ADS  PubMed  Google Scholar 

  15. R. Arnaldi et al. (NA60 collaboration), Phys. Rev. Lett. 96, 162302 (2006); Eur. Phys. J. C61, 711 (2009)

  16. G. Chanfray, J. Delorme, M. Ericson, Nucl. Phys. A 637, 421 (1998)

    ADS  Google Scholar 

  17. G. Chanfray, J. Delorme, M. Ericson, M. Rosa-Clot, Phys. Lett. B 455, 39 (1999)

    ADS  CAS  Google Scholar 

  18. G. Chanfray, Nucl. Phys. A 685, 328c (2001)

    ADS  Google Scholar 

  19. G. Chanfray, Nucl. Phys. A 721, 76c (2003)

    ADS  Google Scholar 

  20. F. Bonnuti et al., Nucl. Phys. A 677, 213 (2000)

    ADS  Google Scholar 

  21. F. Bonnuti et al., Phys. Rev. Lett. 77, 603 (1996)

    ADS  Google Scholar 

  22. F. Bonnuti et al., Phys. Rev. C 60, 018201 (1999)

    ADS  Google Scholar 

  23. A. Starostin et al., Phys. Rev. Lett. 85, 5539 (2000)

    ADS  CAS  PubMed  Google Scholar 

  24. J.G. Messchendorp et al., Phys. Rev. Lett. 89, 222302 (2002)

    ADS  CAS  PubMed  Google Scholar 

  25. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  26. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 16, 15 (1997)

    Google Scholar 

  27. M.C. Birse, Phys. Rev. C 53, R2048 (1996)

    ADS  CAS  Google Scholar 

  28. M.C. Birse, J.A. McGovern, Phys. Lett B309, 231 (1993)

    ADS  Google Scholar 

  29. G. Chanfray, M. Ericson, P.A.M. Guichon, Phys. Rev. C 63, 055202 (2001)

    ADS  Google Scholar 

  30. G. Chanfray, D. Davesne, M. Ericson, M. Martini, Eur. Phys. J. A 27, 191 (2006)

    ADS  CAS  Google Scholar 

  31. J. Boguta, Phys. Lett. B 120, 34 (1983)

    ADS  Google Scholar 

  32. A.K. Kerman and L.D. Miller in “Second High Energy Heavy Ion Summer Study”, LBL-3675 (1974)

  33. W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)

    ADS  Google Scholar 

  34. D. B. Leinweber, A. W. Thomas and R. D. Young, arXiv:hep-lat/0302020

  35. D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 92, 242002 (2004)

    ADS  CAS  PubMed  Google Scholar 

  36. A. W. Thomas, P. A. M. Guichon, D. B. Leinweber and R. D. Young, Progr. Theor. Phys. Suppl. 156, 124 (2004); nucl-th/0411014

  37. W. Armour, C.R. Alton, D.B. Leinweber, A.W. Thomas, R.D. Young, Nucl. Phys. A 840, 97 (2010)

    ADS  Google Scholar 

  38. M. Ericson, G. Chanfray, Eur. Phys. J. A 34, 215 (2007)

    ADS  CAS  Google Scholar 

  39. P.A.M. Guichon, Phys. Lett. B 200, 235 (1988)

    ADS  CAS  Google Scholar 

  40. P.A.M. Guichon, A.W. Thomas, Phys. Rev. Lett. 93, 132502 (2004)

    ADS  CAS  PubMed  Google Scholar 

  41. P.A.M. Guichon, H.H. Matevosyan, N. Sandulescu, A.W. Thomas, Nucl. Phys. A 772, 1 (2006)

    ADS  Google Scholar 

  42. R. Stone, P.A.M. Guichon, P.G. Reinhard, A.W. Thomas, Phys. Rev. Lett. 116, 092511 (2016)

    ADS  Google Scholar 

  43. G. Chanfray, M. Ericson, Eur. Phys. J. A 25, 151 (2005)

    ADS  CAS  Google Scholar 

  44. G. Chanfray, M. Ericson, Phys. Rev. C 75, 015206 (2007)

    ADS  Google Scholar 

  45. E. Massot, G. Chanfray, Phys. Rev. C 78, 015204 (2008)

    ADS  Google Scholar 

  46. E. Massot, G. Chanfray, Phys. Rev. C 80, 015202 (2009)

    ADS  Google Scholar 

  47. R. Somasundaram, J. Margueron, G. Chanfray, H. Hansen, Eur. Phys. J. A 58, 5 (2022)

    Google Scholar 

  48. E. Massot, J. Margueron, G. Chanfray, EPL 97, 39002 (2012)

    ADS  Google Scholar 

  49. G. Chanfray, M. Ericson, Phys. Rev. C 75, 015204 (2011)

    ADS  Google Scholar 

  50. M. Chamseddine, J. Margueron, G. Chanfray, H. Hansen and R. Somasundaram, to be published in Eur. Phys. J. A; arXiv:2304.01817 [nucl-th]

  51. G. Chanfray, H. Hansen and J. Margueron, arXiv:2304.01036 [nucl-th]

  52. G. Chanfray, M. Ericson and M. Martini, Universe 9 (2023) 7, 316; arXiv:2304.01036 [nucl-th]

  53. Yu. A. Simonov, Phys. At. Nucl. 60, 2069 (1997; Few-BodySyst. 25, 45 (1998)

  54. Yu.A. Simonov, J.A. Tjon, Phys. Rev. D 62, 014501 (2000)

    ADS  Google Scholar 

  55. Yu.A. Simonov, J.A. Tjon, J. Weda, Phys. Rev. D 65, 094013 (2002)

    ADS  Google Scholar 

  56. Yu.A. Simonov, Phys. Rev. D 65, 094018 (2002)

    ADS  Google Scholar 

  57. Yu. A. Simonov, Phys. At.Nucl. 67, 846 (2004), hep-ph/0302090;

  58. Yu.A. Simonov, Phys. At. Nucl. 67, 1027 (2004). (hep-ph/0305281)

    CAS  Google Scholar 

  59. Yu.A. Simonov, Int. Mod. Phys. A 31, 165016 (2016). arXiv:1509.06930 [hep-ph]

    Google Scholar 

  60. A. Di Giacomo, H.G. Dosch, V.I. Shevchenko, Yu.A. Simonov, Phys. Rep. 372, 319 (2002)

    ADS  MathSciNet  Google Scholar 

  61. P. Bicudo, N. Brambilla, E. Ribeiro, A. Veiro, Phys. Lett. B 442, 349 (1998)

    ADS  CAS  Google Scholar 

  62. G. Chanfray, P. Schuck, W. Nörenberg, Nucl. Phys. A 519, 311c (1990)

    ADS  Google Scholar 

  63. G. Hohler, E. Pietarinen, Nucl. Phys. B 95, 210 (1975)

    ADS  Google Scholar 

  64. K. Machleidt, Holinde and Ch. Elster, Physics Reports 149, 1 (1987)

    ADS  CAS  Google Scholar 

  65. R. Brockmann, R. Machleidt, Phys. Rev. C 42, 1965 (1990)

    ADS  CAS  Google Scholar 

  66. M. Ichimura, H. Sakai, T. Wakasa, Prog. Part. Nucl. Phys. 56, 446 (2006)

    ADS  CAS  Google Scholar 

  67. B.L. Friman, E.M. Nyman, Nucl. Phys. A 302, 365 (1978)

    ADS  Google Scholar 

  68. J. Goldstone, Proc. Roy. Soc. A239, 267 (1956)

    ADS  MathSciNet  Google Scholar 

  69. G. Chanfray, M. Ericson, M. Martini, Eur. Phys. J. ST 230, 4357 (2021)

    CAS  Google Scholar 

  70. P. Schuck et al., Progr. Part. Nucl. Phys. 22, 181 (1989)

    CAS  Google Scholar 

  71. Y. Dewulf, W. H. Dickhoff, D. Van Neck, E. R. Stoddard, and M.Waroquier, Phys. Rev; . Lett. 90, 152501 (2003)

  72. C. Ciofi degli Atti and S. Liuti, Phys. Lett. B225, 215 (1989);

  73. C. Ciofi degli Atti and S. Liuti, Phys. Rev. C41, 1100 (1990); C. Ciofi degli Atti, Nucl. Phys. A532, 241 (1991)

  74. R.G. Arnold et al., Phys. Rev. Lett. 52, 727 (1984)

    ADS  CAS  Google Scholar 

  75. J. Ashman et al., European Muon Collaboration. Phys. Lett. B 202, 1004 (1988)

    Google Scholar 

  76. S.V. Akulinichev, S.A. Kulagin, G.M. Vagradov, Phys. Lett. B 158, 485 (1985)

    ADS  Google Scholar 

  77. K. Holinde, Phys. Rep. 68, 121 (1981)

    ADS  CAS  Google Scholar 

  78. M. Baldo, H.R. Moshfegh, Phys. Rev. C 86, 024306 (2012)

    ADS  Google Scholar 

  79. G. Chanfray, J. Delorme, M. Ericson, Phys. Rev. C 31, 1582 (1985)

    ADS  CAS  Google Scholar 

  80. J.-I. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957)

    ADS  CAS  Google Scholar 

  81. G. Brown and A.M Green, Nucl. Phys. A137 (1969)

  82. S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W. E. Blatt. and B. H. J. McKeller, Nucl. Phys. A317, 242 (1979)

  83. H.T. Coelho, T.K. Das, M.R. Robilotta, Phys. Rev. C 28, 1812 (1983)

    ADS  CAS  Google Scholar 

  84. M.R. Robilotta, H.T. Coelho, Nucl. Phys. A 460, 645 (1986)

    ADS  Google Scholar 

  85. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011). arXiv:1105.2919 [nucl-th]

    ADS  CAS  Google Scholar 

  86. N. Kaiser, S. Fritsch, W. Weise, Nucl. Phys. A 697, 82 (2002)

    Google Scholar 

Download references

Acknowledgements

I acknowledge my long term collaborators, M. Ericson, M. Martini, D. Davesne, H. Hansen and also more recent ones, J. Margueron and M. Chamsedinne, who where involved at various stages of the theoretical developments described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Chanfray.

Additional information

Communicated by David Blaschke

Dedicated to the memory of Peter Schuck.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanfray, G. Scalar field, nucleon structure and relativistic chiral theory for nuclear matter. Eur. Phys. J. A 60, 7 (2024). https://doi.org/10.1140/epja/s10050-023-01221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01221-2

Navigation