Skip to main content
Log in

Neutrino in Cosmology

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Neutrinos play an important role in the evolution of Universe. High precision modern cosmological measurements are very important source of information of such neutrino properties as the number of neutrino flavors and the sum of neutrino masses. In this review we consider the basics of the cosmology (Friedman–Robertson–Walker metric, Friedman equations and their solutions, early Universe and neutrino decoupling, Big Bang Nucleosynthesis, Cosmic Microwave Background Radiation etc.), discuss the physical basis of the cosmological determination of neutrino properties and present latest value of the number of neutrino flavors and bounds on the sum of neutrino masses \(\sum\nolimits_i {{{m}_{i}}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. The cosmological principle was formulated by A. Einstein in 1917. At that time astrophysicists thought that the Universe is composed of stars. Evidence for the existence of Galaxies came later.

  2. 1 pc = \(3.26\,\,{\text{light}}\,\,{\text{years}} = 3.09 \times {{10}^{{16}}}{\kern 1pt} {\text{m}}\).

  3. From (56) and (58) follows that \({{\rho }_{c}} \simeq 0.86 \times {{10}^{{ - 26}}}\,\,{\text{kg}}\,\,{{{\text{m}}}^{{ - 3}}}\).

  4. In 2011 for discovery of the accelerating expansion of the Universe the Nobel Prize was awarded to S. Perlmutter, B. Schmidt and A. Riess.

  5. Notice that from analysis of cosmological data it was found [4] that \({{w}_{{mbda}}} = - 1.028(31)\).

  6. A condition for the thermal equilibrium in the expanding Universe we will discuss later.

  7. We use the following definition: \(\Delta m_{{ki}}^{2} = m_{i}^{2} - m_{k}^{2}\).

  8. Notice that stable nuclei heavier than \(^{{\text{7}}}{\text{Li}}\) in the BBN practically are not produced. It is connected with the fact that stable nuclei with atomic numbers 5 and 8 do not exist. This prevent production of nuclei heavier than \(^{{\text{7}}}{\text{Li}}\) in \(p + {{\,}^{4}}{\text{He}}\), \(^{{\text{4}}}{\text{He}} + {{\,}^{4}}{\text{He}}\) and other reactions.

  9. Notice that in the hydrogen recombination era helium atoms were not ionized (the ionization energy of helium is larger than that of hydrogen.)

  10.  For textbooks on the General Relativity see, for example, [2729].

  11.  In the same year D. Hilbert derived the equations of the General Relativity from a variational principle [30].

REFERENCES

  1. A. D. Dolgov, “Neutrinos in cosmology,” Phys. Rept. 370, 333 (2002).

    Article  ADS  Google Scholar 

  2. J. Lesgourgues and S. Pastor, “Massive neutrinos and cosmology,” Phys. Rep. 429, 307 (2006).

    Article  ADS  Google Scholar 

  3. S. Hannestad, “Neutrino physics from precision cosmology,” Prog. Part. Nucl. Phys. 65, 185 (2010).

    Article  ADS  Google Scholar 

  4. M. Tanabashi et al. (Particle Data Group), “Review of particle physics, astrophysical constants and parameters,” Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  5. B. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge,” Sov. Phys. JETP 7, 172 (1958).

    Google Scholar 

  6. Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles,” Prog. Theor. Phys. 28, 870 (1962).

    Article  ADS  Google Scholar 

  7. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: Updated global analysis of three-flavor neutrino oscillations” (2020), arXiv:2007.14792 [hep-ph].

  8. P. F. de Salas and S. Pastor, “Relic neutrino decoupling with flavour oscillations revisited,” JCAP, 07, 051 (2016).

  9. S. S. Gershtein and Ya. B. Zeldovich, JETP Lett. 4, 120 (1966).

    ADS  Google Scholar 

  10. M. Aker et al. [KATRIN Collab.], “An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN,” Phys. Rev. Lett. 123, 22180 (2019); arXiv:1909.06048 [hep-ex].

  11. R. H. Cyburt, B. D. Fields, K. A. Olive, and T. H. Yeh, “Big Bang nucleosynthesis: 2015,” Rev. Mod. Phys. 88, 015004 (2016); arXiv:1505.01076.

  12. P. A. Zyla et al. (Particle Data Group), “Review of particle physics,” Prog. Theor. Exp. Phys., 083C01 (2020).

  13. S. Agarwal and H. A. Feldman, “The effect of massive neutrinos on the matter power spectrum,” Mon. Not. R. Astron. Soc. 410, 1647 (2011); arXiv:1006.0689.

    ADS  Google Scholar 

  14. J. Lesgourgues and S. Pastor, “Neutrino cosmology and Planck,” New J. Phys. 16, 065002 (2014); arXiv: 1404.1740.

    Article  ADS  Google Scholar 

  15. E. Baracchini et al. (PTOLEMY Collab.), “PTOLEMY: A proposal for thermal relic detection of massive neutrinos and directional detection of MeV dark matter” (2018); arXiv:1808.01892 [physics.ins-det].

  16. N. Aghanim et al. (Planck Collab.), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020); arXiv:1807.06209, [astro-ph.CO]; https://doi.org/10.1051/0004-6361/201833910

  17. S. Alam et al. (BOSS Collab.), “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample,” Mon. Not. R. Astron. Soc. 470, 2617 (2017); arXiv:1607.03155 [astro-ph.CO].

  18. G. F. Smoot et al. (COBE Collab.), “Structure in the COBE differential microwave radiometer first year maps,” Astrophys. J. 396, L1 (1992).

    Article  ADS  Google Scholar 

  19. C. L. Bennett et al. (WMAP Collab.), “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results,” Astrophys. J. Suppl. 148, 1 (2003); arXiv:astro-ph/0302207.

    Article  ADS  Google Scholar 

  20. A. G. Doroshkevich, Ya. B. Zel’dovich, and R. A. Sunyaev, Sov. Astron. 22, 523 (1978).

    ADS  Google Scholar 

  21. W. Hu and M. J. White, “Measuring the curvature of the Universe” (1996), arXiv:astro-ph/9606140.

  22. P. A. R. Ade et al. (BICEP2 and Keck Array Collabs.), “BICEP2/Keck Array V: Measurements of B-mode polarization at degree angular scales and 150 GHz by the Keck array,” Astrophys. J. 811, 126 (2015); arXiv: 1502.00643 [astro-ph.CO].

  23. S. Naess et al. (ACTPol Collab.), “The Atacama cosmology telescope: CMB polarization at \(200 < \ell < 9000\),” J. Cosmol. Astropart. Phys., 10, 007 (2014); arXiv:1405.5524 [astro-ph.CO].

  24. A. T. Crites et al. (SPT Collab.), “Measurements of E‑mode polarization and temperature-E-mode correlation in the cosmic microwave background from 100 square degrees of SPTpol data,” Astrophys. J. 805, 36 (2015); arXiv:1411.1042 [astro-ph.CO].

    Article  ADS  Google Scholar 

  25. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: Updated global analysis of three-flavor neutrino oscillations” (2020), arXiv:2007.14792 [hep-ph].

  26. M. Tanabashi et al. (Particle Data Group), “Neutrino in cosmology,” Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  27. P. A. M. Dirac, General Theory of Relativity (Princeton Univ. Press, 1996).

    Book  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Classical Theory of Fields (Pergamon Press, Oxford, 1975).

    MATH  Google Scholar 

  29. Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics (Univ. Chicago Press, Chicago, 1983), Vol. II.

  30. D. Hilbert, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 395–407 (1915).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Bilenky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilenky, S.M. Neutrino in Cosmology. Phys. Part. Nuclei 52, 337–356 (2021). https://doi.org/10.1134/S1063779621030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621030035

Navigation