Skip to main content
Log in

Leading and Next-to-Leading Logarithmic Approximations in Quantum Electrodynamics

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstrac

t—Methods for determination of QED radiative corrections in the leading and next-to- leading logarithmic approximations are described. Analytical solutions to the QED evolution equations for electron structure functions are presented. Some examples of applying the methods described to construction of the high-precision description of processes in high-energy accelerators are considered. A case of the calculation of higher-order corrections to the muon decay spectrum is considered in detail. Use of the approaches developed to justify methods of radiation return and direct measurement of the QED running constant is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

Notes

  1. Mass singularities, arising with allowance for the running coupling constant, are not cancelled.

  2. Formally, the asymmetries measured at LEP colliders are independent of luminosity.

  3. For very narrow resonance states, the method operates, but in preliminary estimates, it should be taken into account that the acquired statistics are proportional to the resonance width.

  4. Other charged leptons, i.e., muons, tau-leptons and quarks (hadrons), also are included in consideration if necessary.

  5. In practical applications, other contributions to evolution of electrodynamic coupling constant will be taken into account where it is necessary.

  6. In practice, contributions due to the pair radiation most frequently are simply neglected.

  7. Taking into account the pair production of heavier leptons in LLA is also possible.

  8. If necessary, the condition \({m \mathord{\left/ {\vphantom {m E}} \right. \kern-0em} E} \ll {{\vartheta }_{0}}\) can be removed by recovering the discarded terms proportional to \({{{{m}^{2}}} \mathord{\left/ {\vphantom {{{{m}^{2}}} {{{E}^{2}}}}} \right. \kern-0em} {{{E}^{2}}}}\).

  9. Note that radiative factors in NLLA, describing the radiation of light pairs, are derived in [80].

  10. Asymmetries, e.g., measured forward–backward asymmetry \({{A}_{{FB}}}\), does not contain explicitly a normalization to luminosity. Nevertheless, with the global analysis of SM parameters, the dependence on \(\mathcal{L}\) penetrates into theoretical predictions for this quantity.

  11.  Results of calculation of this function on lattice, available in the literature, are inaccurate.

  12.  Data on hadronic decays of tau-lepton can be used similarly.

  13.  In fact, this quantity corresponds to conditions of the idealized detector. To take realistic conditions into account completely, the events should be simulated numerically by the Monte Carlo method.

  14.  In some cases, for luminosity monitoring at \({{e}^{ + }}{{e}^{ - }}\) colliders, in parallel with Bhabha scattering, other processes are also used, e.g., the annihilation into two photons.

  15.  During this work, we rederived and cross-checked all results used.

  16.  This situation is typical for experiments at \({{e}^{ + }}{{e}^{ - }}\) colliders with energies on the order of a few GeV.

  17.  We note that in contrast to a majority other problems considered in this work, now it is the radiative (and not radiationless) process, which we call the Born process.

  18.  If it is necessary to take the \(Z\)-boson exchange into account, the Born cross section, given in [204], can be used.

  19.  In the given expressions, we systematically omit the terms, which after the integration with respect to the photon emission angle, give the contributions suppressed by the square of the (small) angular opening of the detector.

  20.  Materials of this section are published in [88].

  21.  The electron mass is neglected, since energies about a few GeV are considered.

  22.  By degree of complexity, this problem is similar to the calculation of two-loop corrections to radiationless processes.

  23.  Typically, calculations for the case of production of (pseudo)scalar mesons are executed in the model of scalar electrodynamics.

  24.  The \({{e}^{ + }}{{e}^{ - }} \to {{\pi }^{0}}\gamma \) process with the lower threshold in energy has a small cross section and requires special consideration.

  25. In the forward–backward symmetric experimental setting, contributions of interference are suppressed, since in the lower order they are charge-odd.

  26.  The asymptotic behavior of analyzed cross sections, predicted by perturbative QCD at high energies, is also taken into account.

  27.  In experiment, this case has the advantage, since the background processes yield considerably fewer positrons than electrons.

  28.  Certainly, in the approximation of \({{{{m}_{e}}} \mathord{\left/ {\vphantom {{{{m}_{e}}} {{{m}_{\mu }}}}} \right. \kern-0em} {{{m}_{\mu }}}} \ll 1\).

  29.  Strictly speaking, in the third order we have simultaneously both a pair and a photon.

  30.  Strictly speaking, in the third order we have simultaneously both a pair and a photon.

  31. Experimental study of the left edge of the spectrum is difficult due to the smallness of the differential width in this region.

  32.  In the case of nonzero masses of neutrinos and their mixing, the decay \(\mu \to e\gamma \) becomes allowed also within the SM, but its partial width is obtained to be about \({{10}^{{ - 50}}}\), which is small and inaccessible in current experiments.

REFERENCES

  1. S. L. Glashow, “Partial symmetries of weak interactions,” Nucl. Phys. 22, 579–588 (1961).

    Article  Google Scholar 

  2. S. Weinberg, “A model of leptons,” Phys. Rev. Lett. 19, 1264 (1967).

    Article  ADS  Google Scholar 

  3. A. Salam, in Elementary Particle Theory, Ed. by N. Svartholm (Almqvist and Wiksells, Stockholm, 1968), pp. 367–377.

    Google Scholar 

  4. D. Y. Bardin and G. Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions (Clarendon, Oxford, UK, 1999).

    Google Scholar 

  5. A. Abada et al. [FCC Collaboration], Future Circular Collider, Vol. 3: The Hadron Collider (FCC-hh), CERN-ACC-2018-0058.

  6. E. Accomando et al. [ECFA/DESY LC Physics Working Group], ''Physics with \({{e}^{ + }}{{e}^{ - }}\) linear colliders,'' Phys. Rep. 299, 1 (1998).

    Article  ADS  Google Scholar 

  7. A. Abada et al. [FCC Collaboration], Future Circular Collider, Vol. 2: The Lepton Collider (FCC-ee), CERN-ACC-2018-0057.

  8. J. Guimaräes da Costa et al. [CEPC Study Group], CEPC Conceptual Design Report, Vol. 2: Physics & Detector, arXiv:1811.10545 [hep-ex].

  9. A. A. Penin, “Two-loop photonic corrections to massive Bhabha scattering,” Nucl. Phys. B 734, 185 (2006).

    Article  ADS  Google Scholar 

  10. A. A. Penin, “Two-loop corrections to Bhabha scattering,” Phys. Rev. Lett. 95, 010408 (2005).

    Article  ADS  Google Scholar 

  11. T. Becher and K. Melnikov, “Two-loop QED corrections to Bhabha scattering,” JHEP 0706, 084 (2007).

    Article  Google Scholar 

  12. J. Fleischer, J. Gluza, K. Kajda, and T. Riemann, “Pentagon diagrams of Bhabha scattering,” Acta Phys. Pol. B 38, 3529–3536 (2007).

    ADS  Google Scholar 

  13. S. Actis, M. Czakon, J. Gluza, and T. Riemann, “Virtual hadronic and heavy-fermion O(alpha**2) corrections to Bhabha scattering,” Phys. Rev. D 78, 085019 (2008).

    Article  ADS  Google Scholar 

  14. C. Carloni Calame et al., “NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories,” JHEP 1107, 126 (2011).

    Article  ADS  MATH  Google Scholar 

  15. A. A. Penin and G. Ryan “Two-loop electroweak corrections to high energy large-angle Bhabha scattering,” JHEP 1111, 081 (2011).

  16. H. J. Bhabha, “The scattering of positrons by electrons with exchange on Dirac’s theory of the positron,” Proc. Roy. Soc. A 154, 195–206 (1936).

    Article  ADS  MATH  Google Scholar 

  17. D. R. Yennie, S. C. Frautschi, and H. Suura, “The infrared divergence phenomena and high-energy processes,” Annals Phys. 13, 379 (1961).

    Article  ADS  Google Scholar 

  18. J. C. Bernauer et al. [A1 Collab.], “Electric and magnetic form factors of the proton,” Phys. Rev. C 90, 015206 (2014).

    Article  ADS  Google Scholar 

  19. A. B. Arbuzov and T. V. Kopylova, “On higher order radiative corrections to elastic electron-proton scattering,” Eur. Phys. J. C 75, 603 (2015).

    Article  ADS  Google Scholar 

  20. T. Kinoshita, “Mass singularities of Feynman amplitudes,” J. Math. Phys. 3, 650 (1962).

    Article  ADS  MATH  Google Scholar 

  21. T. D. Lee and M. Nauenberg, “Degenerate systems and mass singularities,” Phys. Rev. 133, B1549 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  22. E. C. G. Stueckelberg and A. Peterman, “La normalisation des constantes dans la theorie des quanta,” Helv. Phys. Acta 26, 499 (1953).

    MathSciNet  MATH  Google Scholar 

  23. M. Gell-Mann and F. E. Low, “Quantum electrodynamics at small distances,” Phys. Rev. 95, 1300 (1954).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. N. N. Bogoliubov and D. V. Shirkov, “On the renormalization group in quantum electrodynamics,” Dokl. Akad. Nauk SSSR 103, 203 (1955).

    MathSciNet  Google Scholar 

  25. N. N. Bogoliubov and D. V. Shirkov, “Application of the renormalization group to improve the formulae of perturbation theory,” Dokl. Akad. Nauk SSSR 103, 391 (1955).

    MathSciNet  Google Scholar 

  26. D. V. Shirkov, “Renormalization group with two coupling constants in the theory of pseudoscalar mesons,” Dokl. Akad. Nauk SSSR 105, 972 (1955).

    MathSciNet  Google Scholar 

  27. N. N. Bogoliubov and D. V. Shirkov, “Charge renormalization group in quantum field theory,” Nuovo Cim. 3, 845 (1956).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. N. N. Bogoliubov and D. V. Shirkov, Introduction into the Theory of Quantized Fields. (Nauka, Moscow, 1957; 1973, 1976, and 1984; Wiley-Interscience, New York, 1959, 1980).

  29. D. V. Shirkov, “Evolution of the Bogoliubov renormalization group,” in Quantum Field Theory, Ed by A.N. Mitra (Hindustan Book Agency, New Delhi, 2000), pp. 25–58.

  30. V. N. Gribov and L. N. Lipatov, “Deep inelastic e p scattering in perturbation theory,” Sov. J. Nucl. Phys. 15, 438 (1972).

    Google Scholar 

  31. V. N. Gribov and L. N. Lipatov, “\({{e}^{ + }}{{e}^{ - }}\) pair annihilation and deep inelastic e p scattering in perturbation theory,” Sov. J. Nucl. Phys. 15, 675 (1972).

    Google Scholar 

  32. L. N. Lipatov, “The parton model and perturbation theory,” Sov. J. Nucl. Phys. 20, 94 (1975).

    Google Scholar 

  33. G. Altarelli and G. Parisi, “Asymptotic freedom in parton language,” Nucl. Phys. B 126, 298 (1977).

    Article  ADS  Google Scholar 

  34. Y. L. Dokshitzer, “Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics,” Sov. Phys. JETP 46, 641 (1977).

    ADS  Google Scholar 

  35. V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze, Preprint SLAC-TRANS-0098, JINR-P2-4543 (Joint Institute for Nuclear Research, Dubna, 1969).

    Google Scholar 

  36. S. D. Drell and T. M. Yan, “Massive lepton pair production in hadron-hadron collisions at high energies,” Phys. Rev. Lett. 25, 316 (1970) [Erratum-ibid. 25, 902 (1970)].

    Article  ADS  Google Scholar 

  37. G. Curci, W. Furmanski, and R. Petronzio, “Evolution of parton densities beyond leading order: The nonsinglet case,” Nucl. Phys. B 175, 27 (1980).

    Article  ADS  Google Scholar 

  38. E. G. Floratos, C. Kounnas, and R. Lacaze, “Higher order QCD effects in inclusive annihilation and deep inelastic scattering,” Nucl. Phys. B 192, 417 (1981).

    Article  ADS  Google Scholar 

  39. W. Furmanski and R. Petronzio, “Singlet parton densities beyond leading order,” Phys. Lett. B 97, 437 (1980).

    Article  ADS  Google Scholar 

  40. R. K. Ellis and W. Vogelsang, “The evolution of parton distributions beyond leading order: The singlet case,” arXiv:hep-ph/9602356.

  41. G. Grunberg, “Renormalization scheme independent QCD and QED: The method of effective charges,” Phys. Rev. D 29, 2315 (1984).

    Article  ADS  Google Scholar 

  42. E. A. Kuraev and V. S. Fadin, “On radiative corrections to e+ e- single photon annihilation at high energy,” Sov. J. Nucl. Phys. 41, 466 (1985).

    Google Scholar 

  43. M. Skrzypek, “Leading logarithmic calculations of QED corrections at LEP,” Acta Phys. Pol. B 23, 135 (1992).

    Google Scholar 

  44. F. A. Berends, W. L. van Neerven, and G. J. H. Burgers, “Higher order radiative corrections at LEP energies,” Nucl. Phys. B 297, 429 (1988) [Erratum-ibid. B 304, 921 (1988)].

    Article  ADS  Google Scholar 

  45. A. Arbuzov and K. Melnikov, “O(alpha**2 ln(m(mu)/m(e))) corrections to electron energy spectrum in muon decay,” Phys. Rev. D 66, 093003 (2002).

    Article  ADS  Google Scholar 

  46. E. W. N. Glover, J. B. Tausk, and J. J. van der Bij, “Second order contributions to elastic large-angle Bhabha scattering,” Phys. Lett. B 516, 33 (2001).

    Article  ADS  Google Scholar 

  47. A. B. Arbuzov, E. A. Kuraev, N. P. Merenkov, and L. Trentadue, “Hadronic cross-sections in electron-positron annihilation with tagged photon,” JHEP 9812, 009 (1998).

    Article  Google Scholar 

  48. V. N. Baier and V. A. Khoze, “Radiation accompanying two-particle annihilation of an electron-positron pair,” Sov. Phys. JETP 21, 1145 (1965).

    ADS  Google Scholar 

  49. V. N. Baier and V. A. Khoze, “Photon emission in muon pair production in electron - positron collisions,” Sov. Phys. JETP 21, 629 (1965).

    ADS  Google Scholar 

  50. M. W. Krasny, W. Placzek, and H. Spiesberger, “Determination of the longitudinal structure function at HERA from radiative events,” Z. Phys. C 53, 687–693 (1992).

    Article  ADS  Google Scholar 

  51. A. Andonov, A. Arbuzov, D. Bardin, et al., “SANCscope–v. 1.00” Comput. Phys. Commun. 174, 481 (2006) [Erratum-ibid. 177, 623 (2007)].

    Article  ADS  Google Scholar 

  52. A. Arbuzov et al., “SANCnews: Sector 4f, charged current,” Eur. Phys. J. C 51, 585 (2007).

    Article  ADS  Google Scholar 

  53. A. Andonov and A. Arbuzov, et al., “Standard SANC modules,” Comput. Phys. Commun. 181, 305 (2010).

    Article  ADS  MATH  Google Scholar 

  54. A. Andonov, D. Bardin, S. Bondarenko, et al., “SANC press release,” Nucl. Instrum. Meth. A 502, 576 (2003).

    Article  ADS  Google Scholar 

  55. A. Arbuzov, U. Baur, S. Bondarenko, S. Carloni Calame, et al., “Tuned comparison of electroweak corrections to Drell–Yan-like W- and Z-boson production—a status report,” in C. Buttar et al., Les Houches physics at TeV colliders2005, Standard Model and Higgs working group: Summary report, arXiv:hep-ph/0604120.

  56. A. Arbuzov, D. Bardin, S. Bondarenko, et al., “One-loop corrections to the Drell–Yan process in SANC. I: The charged current case,” Eur. Phys. J. C 46, 407 (2006) [Erratum-ibid. 50, 505 (2006)].

    Article  ADS  Google Scholar 

  57. A. Arbuzov, D. Bardin, S. Bondarenko, et al., “One-loop corrections to the Drell–Yan process in SANC. II. The neutral current case,” Eur. Phys. J. C 54, 451 (2008).

    Article  ADS  Google Scholar 

  58. A. B. Arbuzov and R. R. Sadykov, “Inverse bremsstrahlung contributions to Drell-Yan-like processes,” J. Exp. Theor. Phys. 133, 564 (2008).

    Google Scholar 

  59. A. Andonov, A. Arbuzov, S. Bondarenko, et al., “NLO QCD corrections to Drell–Yan processes in the SANC framework,” Phys. Atom. Nucl. 73, 1810 (2010).

    Article  Google Scholar 

  60. J. Blumlein and H. Kawamura, “O(alpha**2 L) radiative corrections to deep inelastic e p scattering,” Phys. Lett. B 553, 242 (2003).

    Article  ADS  Google Scholar 

  61. A. B. Arbuzov, G. V. Fedotovich, F. V. Ignatov, E. A. Kuraev, and A. L. Sibidanov, “Monte-Carlo generator for e+e annihilation into lepton and hadron pairs with precise radiative corrections,” Europ. Phys. J. C 46, 689 (2006).

    Article  ADS  Google Scholar 

  62. R. R. Akhmetshin, E. V. Anashkin, A. B. Arbuzov, et al. [CMD-2 Collab.], “Measurement of e+e \( \to \) pi + pi- ross section with CMD-2 around rho meson,” Phys. Lett. B 527, 161 (2002).

    Article  ADS  Google Scholar 

  63. R. R. Akhmetshin, E. V. Anashkin, A. B. Arbuzov, et al. [CMD-2 Collab.], “Reanalysis of hadronic cross section measurements at CMD-2,” Phys. Lett. B 578, 285 (2004).

    Article  ADS  Google Scholar 

  64. W. Fetscher and H. J. Gerber, “Muon decay parameters,” Eur. Phys. J. C 15, 316 (2000).

    Google Scholar 

  65. Y. Kuno and Y. Okada, “Muon decay and physics beyond the Standard Model,” Rev. Mod. Phys. 73, 151 (2001).

    Article  ADS  Google Scholar 

  66. S. Eidelman, “Project of the super-tau-charm factory in Novosibirsk,” Nucl. Part. Phys. Proc. 260, 238 (2015).

    Article  Google Scholar 

  67. A. B. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M. W. Grunewald, K. Monig, S. Riemann, and T. Riemann, “ZFITTER: A semi-analytical program for fermion pair production in e+e annihilation, from version 6.21 to version 6.42,” Comp. Phys. Commun. 174, 728 (2006).

    Article  ADS  Google Scholar 

  68. A. B. Arbuzov, “Higher order pair corrections to electron-positron annihilation,” JHEP 0107, 043 (2001).

    Article  Google Scholar 

  69. A. B. Arbuzov, V. A. Astakhov, A. V. Fedorov, G. V. Fedotovich, E. A. Kuraev, N. P. Merenkov, “Radiative corrections for pion and kaon production at \({{e}^{ + }}{{e}^{ - }}\) colliders of energies below 2 GeV,” JHEP 10, 006 (1997).

  70. A. B. Arbuzov, G. V. Fedotovich, E. A. Kuraev, N. P. Merenkov, V. D. Rushai, and L. Trentadue, “Large angle QED processes at \({{e}^{ + }}{{e}^{ - }}\) colliders at energies below 3 GeV,” JHEP 10, 001 (1997).

  71. M. Kobel and A. B. Arbuzov, et al. [Two Fermion Working Group], “Two-fermion production in electron-positron collisions,” in CERN Yellow Report: Reports of the Working Groups on Precision Calculation for LEP2 Physics, Ed. by S. Jadach, G. Passarino, and R. Pittau (Geneva, 1999/2000), pp.269–378.

    Google Scholar 

  72. A. B. Arbuzov and E. S. Scherbakova, “Next-to-leading order corrections to Bhabha scattering in renormalization group approach. I: Soft and virtual photonic contributions,” JETP Lett. 83, 499 (2006).

    Article  Google Scholar 

  73. A. B. Arbuzov, D. Haidt, C. Matteuzzi, M. Paganoni, and L Trentadue. “The running of the electromagnetic coupling alpha in small-angle Bhabha scattering,” Eur. Phys. J. C 34, 267 (2004).

    Article  ADS  Google Scholar 

  74. A. B. Arbuzov, E. A. Kuraev, and B. G. Shaikhatdenov, “Violation of the factorization theorem in large-angle radiative Bhabha scattering,” J. Exp. Theor. Phys. 88, 213 (1999).

    Article  ADS  Google Scholar 

  75. A. B. Arbuzov, E. A. Kuraev, and B. G. Shaikhatdenov, “Second order contributions to elastic large-angle Bhabha scattering,” Mod. Phys. Lett. A 13, 2305 (1998).

    Article  ADS  Google Scholar 

  76. A. B. Arbuzov, G. I. Gach, V. Yu. Gontchar, E. A. Kuraev, N. P. Merenkov, and L. Trentadue, “Small-angle Bhabha scattering at LEP1. Analytical results for wide-narrow angular acceptance,” Phys. Lett. B 399, 312 (1997).

    Article  ADS  Google Scholar 

  77. N. P. Merenkov, A. B. Arbuzov, V. S. Fadin, E. A. Kuraev, L. N. Lipatov, and L. Trentadue, “Analytical calculation of small-angle Bhabha cross-section at LEP1,” Acta Phys. Pol. B 28, 491 (1997).

    Google Scholar 

  78. A. B. Arbuzov, V. S. Fadin, E. A. Kuraev, L. N. Lipatov, N. P. Merenkov, and L. Trentadue, “Small-angle electron-positron scattering,” Phys. Lett. B 394, 218 (1997).

    Article  ADS  Google Scholar 

  79. A. B. Arbuzov, V. S. Fadin, E. A. Kuraev, L. N. Lipatov, N. P. Merenkov, and L. Trentadue, “Small-angle Bhabha scattering with a per mille accuracy,” Nucl. Phys. B 485, 457 (1997).

    Article  ADS  Google Scholar 

  80. A. B. Arbuzov, E. A. Kuraev, N. P. Merenkov, and L. Trentadue, “Hard pair production in large-angle Bhabha scattering,” Nucl. Phys. B 474, 271 (1996).

    Article  ADS  Google Scholar 

  81. A. B. Arbuzov, M. Bigi, H. Burkhardt, et al., “The present theoretical error on the Bhabha scattering cross–section in the luminometry region at LEP,” Phys. Lett. B 383, 238 (1996).

    Article  ADS  Google Scholar 

  82. A. B. Arbuzov and E. A. Kuraev, “Small-angle Bhabha scattering,” Fiz. Elem. Chastits At. Yadra 27, 1247 (1996).

    Google Scholar 

  83. A. B. Arbuzov, E. A. Kuraev, N. P. Merenkov, and L. Trentadue, “Pair production in small-angle Bhabha scattering,” J. Exp. Theor. Phys. 81, 638 (1995).

    ADS  Google Scholar 

  84. A. Arbuzov, V. Fadin, E. Kuraev, L. Lipatov, N. Merenkov, and L. Trentadue, “Small-angle Bhabha scattering for LEP,” in CERN Yellow Report (CERN 95-03, Geneva, 1995). P. 369.

  85. H. Anlauf and A. Arbuzov, et al., in Event Generators for Bhabha Scattering, Conveners S. Jadach and O. Nicrosini (Yellow Report CERN 96-01, 1996), P. 229.

  86. A. B. Arbuzov, V. S. Fadin, E. A. Kuraev, L. N. Lipatov, N. P. Merenkov, and L. Trentadue, “Small-angle Bhabha scattering,” Nucl. Phys. B Proc. Suppl. 51S, 154 (1996).

    Article  ADS  Google Scholar 

  87. A. B. Arbuzov, “LABSMC: Monte Carlo event generator for large-angle Bhabha scattering,” arXiv:hep-ph/9907298.

  88. A. B. Arbuzov, “Radiative corrections to high energy lepton bremsstrahlung on heavy nuclei,” JHEP 01, 031 (2008).

    Article  Google Scholar 

  89. H. Anlauf, A. B. Arbuzov, E. A. Kuraev, and N. P. Merenkov, “QED corrections to deep inelastic scattering with tagged photons at HERA,” Phys. Rev. D 59, 014003 (1999).

    Article  ADS  Google Scholar 

  90. H. Anlauf, A. B. Arbuzov, E. A. Kuraev, and N. P. Merenkov, “Tagged photons in DIS within the next-to-leading accuracy,” JHEP 10, 013 (1998).

  91. A. B. Arbuzov and E. S. Scherbakova, “One-loop corrections to radiative muon decay,” Phys. Lett. B 597, 285 (2004).

    Article  ADS  Google Scholar 

  92. A. B. Arbuzov, “Virtual and soft pair corrections to polarized muon decay spectrum,” JETP Lett. 78, 179 (2003).

    Article  ADS  Google Scholar 

  93. A. Arbuzov, “Higher order QED corrections to muon decay spectrum,” JHEP 0303, 063 (2003).

    Article  ADS  Google Scholar 

  94. A. B. Arbuzov, “First order radiative corrections to polarized muon decay spectrum,” Phys. Lett. B 524, 99 (2002) [Erratum-ibid. 535, 378 (2002)].

    Article  ADS  Google Scholar 

  95. A. B. Arbuzov, O. Krehl, E. A. Kuraev, E. N. Magar, B. G. Shaikhatdenov, “Radiative corrections to the background of \(\mu \to e\gamma \) decay,” Phys. Lett. B 432, 421 (1998).

    Article  ADS  Google Scholar 

  96. R. P. Feynman, “Very high-energy collisions of hadrons,” Phys. Rev. Lett. 23, 1415 (1969).

    Article  ADS  Google Scholar 

  97. J. D. Bjorken and E. A. Paschos, “Inelastic electron-proton and gamma-proton scattering, and the structure of the nucleon,” Phys. Rev. 185, 1975 (1969).

    Article  ADS  Google Scholar 

  98. E. A. Kuraev, “Radiative tail in pi(e2) decay and some remarks on mu - e universality,” JETP Lett. 65, 127 (1997).

    Article  ADS  Google Scholar 

  99. A. De Rujula, R. Petronzio, and A. Savoy-Navarro, “Radiative corrections to high-energy neutrino scattering,” Nucl. Phys. B 154, 394 (1979).

    Article  ADS  Google Scholar 

  100. A. B. Arbuzov, D. Y. Bardin, J. Blumlein, L. Kalinovskaya, and T. Riemann, “HECTOR 1.00—A program for the calculation of QED, QCD and electroweak corrections to ep and l±N deep inelastic neutral and charged current scattering,” Comput. Phys. Commun. 94, 128 (1996).

    Article  ADS  Google Scholar 

  101. J. Blumlein, “Leading log radiative corrections to deep inelastic neutral and charged current scattering at Hera,” Z. Phys. C 47, 89 (1990).

    Article  Google Scholar 

  102. J. Blumlein, “HELIOS 1.00: A program to calculate leading log QED corrections to e p scattering,” in Proceedings of Physics at HERA, and Zeuthen Inst. Hochenergiephys. (Hamburg, 1991), vol. 3, pp. 1270–1284.

  103. G. Altarelli, “Partons in quantum chromodynamics,” Phys. Rept. 81, 1 (1982).

    Article  ADS  Google Scholar 

  104. V. N. Baier, V. M. Katkov, and V. S. Fadin, Radiation of Relativistic Electrons (Atomizdat, Moscow, 1973).

    Google Scholar 

  105. S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller, and M. Strikman, “Diffractive leptoproduction of vector mesons in QCD,” Phys. Rev. D 50, 3134 (1994).

    Article  ADS  Google Scholar 

  106. J. C. Collins, L. Frankfurt, and M. Strikman, “Factorization for hard exclusive electroproduction of mesons in QCD,” Phys. Rev. D 56, 2982 (1997).

    Article  ADS  Google Scholar 

  107. Y. S. Tsai, Preprint SLAC-PUB-3129 (1983).

  108. M. Cacciari, A. Deandrea, G. Montagna, and O. Nicrosini, “QED structure functions: A systematic approach,” Europhys. Lett. 17, 123 (1992).

    Article  ADS  Google Scholar 

  109. A. B. Arbuzov, V. V. Bytev, E. A. Kuraev, E. Tomasi-Gustafsson, and Yu. M. Bystritskiy, “Structure function approach in QED for high energy processes,” Phys. Part. Nucl. 41, 394 (2010).

    Article  Google Scholar 

  110. A. B. Arbuzov, “Non-singlet splitting functions in QED,” Phys. Lett. B 470, 252 (1999).

    Article  ADS  Google Scholar 

  111. M. Przybycien, “A fifth order perturbative solution to the Gribov–Lipatov equation,” Acta Phys. Pol. B 24, 1105 (1993).

    Google Scholar 

  112. S. Jadach and B. F. L. Ward, “YFS2: The second order Monte Carlo for fermion pair production at LEP/SLC with the initial state radiation of two hard and multiple soft photons,” Comput. Phys. Commun. 56, 351 (1990).

    Article  ADS  Google Scholar 

  113. S. Jadach, E. Richter-Was, B. F. L. Ward, et al., “Higher order radiative corrections to low angle Bhabha scattering: The YFS Monte Carlo approach,” Phys. Lett. B 353, 362 (1995).

    Article  ADS  Google Scholar 

  114. O. Nicrosini and L. Trentadue, “Soft photons and second order radiative corrections to e+e \( \to \)Z0,” Phys. Lett. B 196, 551 (1987).

    Article  ADS  Google Scholar 

  115. A. Antropov, A. Arbuzov, R. Sadykov, and Z. Was, “Extra lepton pair emission corrections to Drell–Yan processes in PHOTOS and SANC,” Acta Phys. Pol. B 48, 1469 (2017).

    Article  ADS  Google Scholar 

  116. A. I. Akhiezer and V. B. Berestecki, Quantum Electrodynamics (Wiley-Interscience, New York, 1969).

    Google Scholar 

  117. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed. (Pergamon Press, Oxford, 1982)

    Google Scholar 

  118. P. I. Fomin, “Radiative corrections to bremsstrahlung,” Sov. Phys. JETP 35, 491 (1959).

    Google Scholar 

  119. Yu. M. Antipov et al., “Measurement of pi- meson polarizability in pion Compton effect,” Phys. Lett. B 121, 445 (1983).

    Article  ADS  Google Scholar 

  120. A. Guskov, “Pion polarizabilities measurement at COMPASS,” J. Phys. Conf. Ser. 110, 022016 (2008).

    Article  Google Scholar 

  121. C. Adolph et al. [COMPASS Collab.], “Measurement of the charged-pion polarizability,” Phys. Rev. Lett. 114, 062002 (2015).

    Article  ADS  Google Scholar 

  122. P. Abbon et al. [COMPASS Collab.], “The COMPASS experiment at CERN,” Nucl. Instrum. Meth. A 577, 455 (2007).

    Article  ADS  Google Scholar 

  123. F. Bradamante, G. Mallot, and S. Paul (Eds), “Workshop on future physics at COMPASS,” in Proceedings at CERN (Geneva, Switzerland, 26-27 Sep. 2002), CERN Yellow Report 2004-011.

  124. Yu. M. Andreev and E. V. Bugaev, “Muon bremsstrahlung on heavy atoms,” Phys. Rev. D 55, 1233 (1997).

    Article  ADS  Google Scholar 

  125. M. Vanderhaeghen et al., “QED radiative corrections to virtual Compton scattering,” Phys. Rev. C 62, 025501 (2000).

    Article  ADS  Google Scholar 

  126. E. A. Kuraev, N. P. Merenkov, and V. S. Fadin, “The Compton effect tensor with heavy photon,” Sov. J. Nucl. Phys. 45, 486 (1987).

    Google Scholar 

  127. D.Bardin, S.Bondarenko, L.Kalinovskaya, et al., “SANCnews: Sector f f b b, " Comput. Phys. Commun. 177, 738–756 (2007).

    Article  ADS  Google Scholar 

  128. G. P. Lepage, “New algorithm for adaptive multidimensional integration,” J. Comput. Phys. 27, 192 (1978).

    Article  ADS  MATH  Google Scholar 

  129. A. A. Akhundov, D. Y. Bardin, G. Mitselmakher, and A. G. Olszewski, “About the electromagnetic corrections to the polarizabilities of a charged pion,” Sov. J. Nucl. Phys. 42, 426 (1985).

    Google Scholar 

  130. W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, “Deep inelastic scattering beyond the leading order in asymptotically free gauge theories,” Phys. Rev. D 18, 3998 (1978).

    Article  ADS  Google Scholar 

  131. R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and Collider Physics (Cambridge University Press, Cambridge, 1996).

    Book  Google Scholar 

  132. S. Catani, “The singular behaviour of QCD amplitudes at two-loop order,” Phys. Lett. B 427, 161 (1998).

    Article  ADS  Google Scholar 

  133. W. Beenakker, F. A. Berends, and S. C. van der Marck, “Large-angle Bhabha scattering,” Nucl. Phys. B 349, 323 (1991).

    Article  ADS  Google Scholar 

  134. A. B. Arbuzov, E. A. Kuraev, N. P. Merenkov, and L. Trentadue, “Virtual and soft real pair production in large-angle Bhabha scattering,” Phys. Atom. Nucl. 60, 591 (1997).

    ADS  Google Scholar 

  135. A. B. Arbuzov, V. A. Astakhov, E. A. Kuraev, N. P. Merenkov, L. Trentadue, and E. V. Zemlyanaya, “Emission of two hard photons in large-angle Bhabha scattering,” Nucl. Phys. B 483, 83 (1997).

    Article  ADS  Google Scholar 

  136. V. N. Baier, V. S. Fadin, and V. A. Khoze, “Quasireal electron method in high-energy quantum electrodynamics,” Nucl. Phys. B 65, 381 (1973).

    Article  ADS  Google Scholar 

  137. G. ‘t Hooft and M. J. G. Veltman, “Scalar one-loop integrals,” Nucl. Phys. B 153, 365 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  138. C. M. Calame Carloni, M. Passera, L. Trentadue, and G. Venanzoni, “A new approach to evaluate the leading hadronic corrections to the muon g-2,” Phys. Lett. B 746, 325 (2015).

    Article  ADS  Google Scholar 

  139. G. Abbiendi et al., “Measuring the leading hadronic contribution to the muon g-2 via \(\mu e\) scattering,” Eur. Phys. J. C 77, 139 (2017).

    Article  ADS  Google Scholar 

  140. B. Pietrzyk, “High precision measurements of the luminosity at LEP,” in Proceedings of the Tennessee International Symposium on Radiative Corrections: Status and Outlook (Gatlinburg, Tennessee, 27 June–1 July, 1994), Ed. by B.F.L. Ward (World Scientific, Singapore, 1995).

  141. D. Decamp et al. [ALEPH Collab.], “Determination of the number of light neutrino species,” Phys. Lett. B 231, 519 (1989).

    Article  ADS  Google Scholar 

  142. B. F. L. Ward, S. Jadach, W. Placzek, M. Skrzypek, and S. A. Yost, “Path to the \(0.01\% \) theoretical luminosity precision requirement for the FCC-ee (and ILC),” arXiv:1902.05912 [hep-ph].

  143. V. S. Fadin, E. A. Kuraev, L. N. Lipatov, N. P. Merenkov, and L. Trentadue, “Generalized eikonal representation of the small-angle e+ e- scattering amplitude at high energy,” Phys. Atom. Nucl. 56, 1537 (1993).

    ADS  Google Scholar 

  144. S. Jadach, E. Richter-Was, B. F. L. Ward, and Z. Was, “Analytical O(alpha) distributions for Bhabha scattering at low angles,” Phys. Lett. B 253, 469–477 (1991).

    Article  ADS  Google Scholar 

  145. R. Budny, “Weak effects in \({{e}^{ + }}{{e}^{ - }} \to {{e}^{ + }}{{e}^{ - }}\),” Phys. Lett. B 58, 338 (1975).

    Article  ADS  Google Scholar 

  146. M. Bohm, A. Denner, and W. Hollik, “Radiative corrections to Bhabha scattering at high energies. 1. Virtual and soft photon corrections,” Nucl. Phys. B 304, 687 (1988).

    Article  ADS  Google Scholar 

  147. D. Y. Bardin, W. Hollik, and T. Riemann, “Bhabha scattering with higher order weak loop corrections,” Z. Phys. C 49, 485 (1991).

    Google Scholar 

  148. W. Beenakker, F. A. Berends, and S. C. van der Marck, “Small-angle Bhabha scattering,” Nucl. Phys. B 355, 281 (1991).

    Article  ADS  Google Scholar 

  149. M. Cacciari, A. Deandrea, G. Montagna, O. Nicrosini, and L. Trentadue, “Bhabha scattering at LEP: Small angle,” Phys. Lett. B 271, 431–434 (1991).

    Article  ADS  Google Scholar 

  150. M. Caffo, H. Czyz, and E. Remiddi, “Bhabha scattering at high-energy,” Nuovo Cim. A 105, 277 (1992).

    Article  ADS  Google Scholar 

  151. K. S. Bjoerkevoll, P. Osland, and G. Faeldt, “Two loop ladder diagram contributions to Bhabha scattering. 2: Asymptotic results for high energies,” Nucl. Phys. B 386, 303 (1992).

    Article  ADS  Google Scholar 

  152. W. Beenakker and B. Pietrzyk, “Contribution of terms containing Z boson exchange to the luminosity measurements at LEP,” Phys. Lett. B. 296, 241 (1992).

    Article  ADS  Google Scholar 

  153. W. Beenakker and B. Pietrzyk, “Bhabha scattering at very small angles at LEP,” Phys. Lett. B 304, 366 (1993).

    Article  ADS  Google Scholar 

  154. M. Cacciari, G. Montagna, O. Nicrosini, and F. Piccinini, “SABSPV: A Monte Carlo integrator for small-angle Bhabha scattering,” Comput. Phys. Commun. 90, 301 (1995).

    Article  ADS  Google Scholar 

  155. M. L. G. Redhead, “Radiative corrections to the scattering of electrons and positrons by electrons,” Proc. Roy. Soc. A 220, 219 (1953).

    Article  ADS  MATH  Google Scholar 

  156. R. V. Polovin, “Radiative corrections to the scattering of electrons by electrons and positrons,” Sov. Phys. JETP 4, 385 (1956).

    MathSciNet  MATH  Google Scholar 

  157. F. A. Berends, K. J. F. Gaemers, and R. Gastmans, “Hard photon corrections for Bhabha scattering,” Nucl. Phys. B 68, 541 (1974).

    Article  ADS  Google Scholar 

  158. S. Actis, A. Arbuzov, G. Balossini, et al., “Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data,” Eur. Phys. J. C 66, 585 (2010).

    Article  Google Scholar 

  159. S. Eidelman and F. Jegerlehner, “Hadronic contributions to g-2 of the leptons and to the effective fine structure constant alpha (M(z)**2),” Z. Phys. C 67, 585 (1995).

    Article  ADS  Google Scholar 

  160. E. A. Kuraev, L. N. Lipatov, and N. P. Merenkov, “High energy behavior of total cross-sections for e+e scattering and the slope at q-squared = 0 of the Dirac form-factor,” Phys. Lett. B 47, 33 (1973).

    Article  ADS  Google Scholar 

  161. H. Cheng and T. T. Wu, “High-energy collision processes in quantum electrodynamics. II,” Phys. Rev. 182, 1868 (1969).

    Article  ADS  Google Scholar 

  162. V. G. Gorshkov, “Electrodynamical processes in opposed high-energy particle beams,” Sov. Phys. Usp. 16, 322–338 (1973).

    Article  ADS  Google Scholar 

  163. R. Barbieri, J. A. Mignaco, and E. Remiddi, “Electron form-factors up to fourth order. 1,” Nuovo Cim. A 11, 824 (1972).

    Article  ADS  Google Scholar 

  164. R. Barbieri, J. A. Mignaco, and E. Remiddi, “Electron form factors up to fourth order. 2,” Nuovo Cim. A 11, 865 (1972).

    Article  ADS  Google Scholar 

  165. I. Akushevich, A. Arbuzov, and E. Kuraev, “Compton tensor with heavy photon in the case of longitudinally polarized fermion,” Phys. Lett. B 432, 222 (1998).

    Article  ADS  Google Scholar 

  166. A. M. Vermaseren, “The FORM project,” Nucl. Phys. Proc. Suppl. 183, 19 (2008).

    Article  ADS  Google Scholar 

  167. J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga, “FORM version 4.0,” Comput. Phys. Commun. 184, 1453 (2013).

    Article  ADS  MATH  Google Scholar 

  168. H. Cheng and T. T. Wu, Expanding Protons: Scattering at High Energies (MIT Press, Cambridge, MA, 1987).

    Google Scholar 

  169. V. N. Baier, E. A. Kuraev, V. S. Fadin, and V. A. Khoze, “Inelastic processes in quantum electrodynamics at high energies,” Phys. Rep. 78, 293 (1981).

    Article  ADS  Google Scholar 

  170. V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, “The two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation,” Phys. Rep. 15, 181 (1975).

    Article  ADS  Google Scholar 

  171. N. P. Merenkov, “Production of hard e+e pairs in ep collisions at high energies,” Sov. J. Nucl. Phys. 50, 469 (1989).

    Google Scholar 

  172. R. R. Akhmetshin et al., “Measurement of phi meson parameters with CMD-2 detector at VEPP-2M collider,” Phys. Lett. B 364,199 (1995).

    Article  ADS  Google Scholar 

  173. S. Eidelman, “Physics at VEPP-2000,” Nucl. Phys. Proc. Suppl. 162, 323 (2006).

    Article  ADS  Google Scholar 

  174. A. Aloisio et al., “KLOE, a general purpose detector for DA\(\Phi \)NE,” in The DA \(\Phi \)NE Physics Handbook, Ed. by L. Maiani, G. Pancheri, and N. Paver (Laboratori Nazionali di Frascati. Italy, 1993), Vol. 2 [Preprint LNF-92/019 (IR)].

    Google Scholar 

  175. P. Franzini, “The muon gyromagnetic ratio and \({{R}_{H}}\) at DA\(\Phi \)NE,” in The Second DA \(\Phi \)NE Physics Handbook, Ed. by L. Maiani, G. Pancheri, and N. Paver (Laboratori Nazionali di Frascati. Italy, 1995), Vol. 2, p. 471, 1995.

    Google Scholar 

  176. H. L. Ni et al., “The luminosity monitor of BES,” Nucl. Instrum. Meth. A 336, 542 (1993).

    Article  ADS  Google Scholar 

  177. S. L. Olsen, “Status of BEPC-II and BES-III,” AIP Conf. Proc. 1182, 402 (2009).

    Article  ADS  Google Scholar 

  178. F. A. Berends, R. Kleiss, and S. Jadach, “Radiative corrections to muon pair and quark pair production in electron-positron collisions in the Z0 region,” Nucl. Phys. B 202, 63–88 (1982).

    Article  ADS  Google Scholar 

  179. A. B. Arbuzov, D. Y. Bardin, and A. Leike, “Analytic final state corrections with cut for e+e \( \to \) massive fermions,” Mod. Phys. Lett. A 7, 2029 (1992) [Erratum: Mod. Phys. Lett. 9, 1515 (1994)].

    Article  ADS  Google Scholar 

  180. I. B. Khriplovich, “Charge asymmetry of muon angular distribution in e+e \( \to \) muon+ muon process,” Yad. Fiz. 17, 576 (1973) [Sov. J. Nucl. Phys. 17, 298 (1973)].

    Google Scholar 

  181. S. I. Eidelman, E. A. Kuraev, and V. S. Panin, “Processes e+e \( \to \)e+eγ, μ+μγ, γγγ with emission of final particles at large angles,” Nucl. Phys. B 148, 245 (1979).

    Article  ADS  Google Scholar 

  182. D. Y. Bardin and L. Kalinovskaya, “QED corrections for polarized elastic mu-e scattering,” arXiv:hep-ph/9712310.

  183. F. A. Berends, K. J. F. Gaemer, and R. Gastmans, “Hard photon corrections for the process e+e \( \to \) mu± mu–+,” Nucl. Phys. B 57, 381 (1973).

    Article  ADS  Google Scholar 

  184. E. A. Kuraev and G. V. Meledin, “QED distributions for hard photon emission in \({{e}^{ + }}{{e}^{ - }} \to {{\mu }^{ + }}{{\mu }^{ - }}{\text{gamma}}\),” Nucl. Phys. B 122, 485 (1977).

    Article  ADS  Google Scholar 

  185. M. V. Terentiev, “Double-logarithm asymptotics of the e-plus + e-minus \( \to \) 3 γ annihilation,” Yad. Fiz. 9, 1212 (1969).

    Google Scholar 

  186. F. A. Berends and R. Gastmans, “Hard photon corrections for e+ e \( \to \) γγ,” Nucl. Phys. B 61, 414 (1973).

    Article  ADS  Google Scholar 

  187. S. I. Eidelman and E. A. Kuraev, “e+e annihilation into two and three photons at high-energy," Nucl. Phys. B 143, 353 (1978).

  188. F. A. Berends, R. Kleiss, P. De Causmaecker, et al., “Multiple bremsstrahlung in gauge theories at high-energies. 2. Single bremsstrahlung,” Nucl. Phys. B 206, 61 (1982).

    Article  ADS  Google Scholar 

  189. G. Gamow, “Zur Quantentheorie des Atomkernes,” Z. Phys. 51, 204 (1928).

    Article  ADS  MATH  Google Scholar 

  190. A. Sommerfeld, Atmobau und Spektralinien, Bd. 2. (Vieweg, Braunschweig, 1939).

    Google Scholar 

  191. A. D. Sakharov, “Interaction of an electron and positron in pair production,” Sov. Phys. Usp. 34, 375 (1991).

    Article  ADS  Google Scholar 

  192. I. T. Todorov, “Quasipotential equation corresponding to the relativistic eikonal approximation,” Phys. Rev. D 3, 2351 (1971).

    Article  ADS  Google Scholar 

  193. V. S. Fadin and V. A. Khoze, “Production of a pair of heavy quarks in e+e annihilation in the threshold region,” Sov. J. Nucl. Phys. 48, 309 (1988).

    Google Scholar 

  194. V. S. Fadin, V. A. Khoze, and T. Sjostrand, “On the threshold behavior of heavy top production,” Z. Phys. C 48, 613 (1990).

    Article  ADS  Google Scholar 

  195. D. Y. Bardin, W. Beenakker, and A. Denner, “The Coulomb singularity in off-shell W pair production,” Phys. Lett. B 317, 213 (1993).

    Article  ADS  Google Scholar 

  196. J. H. Yoon and C. Y. Wong, “Relativistic modification of the Gamow factor,” Phys. Rev. C 61, 044905 (2000).

    Article  ADS  Google Scholar 

  197. J. H. Yoon and C. Y. Wong, “Relativistic generalization of the Gamow factor for fermion pair production or annihilation,” J. Phys. G 31, 149 (2005).

    Article  ADS  Google Scholar 

  198. O. P. Solovtsova and Yu. D. Chernichenko, “Threshold resummation \(S\)-factor in QCD: The case of unequal masses,” Phys. Atom. Nucl. 73, 1612 (2010).

    Article  ADS  Google Scholar 

  199. A. B. Arbuzov, “On a novel equal time relativistic quasipotential equation for two scalar particles, "Nuovo Cim. A 107, 1263 (1994).

    Article  ADS  Google Scholar 

  200. L. W. Mo and Y. S. Tsai, “Radiative corrections to elastic and inelastic e p and mu p scattering,” Rev. Mod. Phys. 41, 205 (1969).

    Article  ADS  Google Scholar 

  201. H. Spiesberger (convener) et al., Radiative Corrections at HERA in Physics at HERA, Ed. by W. Buchmüller and G. Ingelman (DESY, Hamburg, 1991).

    Google Scholar 

  202. A. A. Akhundov, D. Y. Bardin, L. Kalinovskaya, and T. Riemann, “Model independent QED corrections to the process \(ep\to eX\),” Fortsch. Phys. 44, 373 (1996).

    Article  ADS  Google Scholar 

  203. S. Jadach, W. Placzek, and M. Jezabek, “How to handle QED bremsstrahlung effects at Hera by photon tagging,” Phys. Lett. B 248, 417 (1990).

    Article  ADS  Google Scholar 

  204. D. Y. Bardin, L. Kalinovskaya, and T. Riemann, “Deep inelastic scattering with tagged photons at HERA,” Z. Phys. C 76, 487 (1997).

    Article  Google Scholar 

  205. T. Ahmed et al. [H1 Collab.], “Experimental study of hard photon radiation processes at Hera,” Z. Phys. C 66, 529 (1995).

    Article  ADS  Google Scholar 

  206. L. Favart, M. Gruwe, P. Marage, et al., “On the possibility of measuring F(L)(x,\({{Q}^{2}}\)) at HERA using radiative events,” Z. Phys. C 72, 425 (1996).

    Article  ADS  Google Scholar 

  207. A. Aktas et al. [H1 Collab.], “Measurement of the proton structure function F2 at low Q**2 in QED Compton scattering at HERA,” Phys. Lett. B 598, 159 (2004).

    Google Scholar 

  208. R. P. Feynman, Photon-Hadron Interactions (W.A. Benjamin, Inc., Reading, Massachusetts, 1972).

    Google Scholar 

  209. N. P. Merenkov, “A study of the process of emission of two hard photons in e p collisions at high energies,” Sov. J. Nucl. Phys. 48, 1073 (1988).

    Google Scholar 

  210. H. Abramowicz and A. Levy, “The ALLM parameterization of \(\sigma \)(tot)\(({{\gamma }^{ * }}p)\): An update,” Preprint DESY-97-251, arXiv:hep–ph/9712415.

  211. V. N. Baier, V. S. Fadin, and V. A. Khoze, “Photon bremsstrahlung in collisions of high-energy electrons,” Sov. Phys. JETP 24, 760 (1966).

    ADS  Google Scholar 

  212. V. N. Baier, V. S. Fadin, and V. A. Khoze, “Radiation effects in experiments with colliding electron beams,” Sov. Phys. Dokl. 12, 464 (1967).

    ADS  Google Scholar 

  213. S. Catani and L. Trentadue, “Fermion pair exponentiation in QED,” JETP Lett. 51, 83 (1990).

    ADS  Google Scholar 

  214. S. I. Dolinsky et al., “Summary of experiments with the neutral detector at \({{e}^{ + }}{{e}^{ - }}\) storage ring VEPP-2M,” Phys. Rep. 202, 99 (1991).

    Article  ADS  Google Scholar 

  215. S. Binner, J. H. Kuhn, and K. Melnikov, “Measuring sigma(e+e \( \to \) hadrons) using tagged photon,” Phys. Lett. B 459, 279 (1999).

    Article  ADS  Google Scholar 

  216. A. B. Arbuzov, V. V. Bytev, and E. A. Kuraev, “Radiative muon pair production in high-energy electron positron annihilation process,” JETP Lett. 79, 593 (2004).

    Article  ADS  Google Scholar 

  217. A. B. Arbuzov, E. Bartos, V. V. Bytev, E. A. Kuraev, Z. K. Silagadze, “High accuracy description of radiative return production of low-mass muon and pion pairs at \({{e}^{ + }}{{e}^{ - }}\)-colliders,” JETP Lett. 80, 678 (2004).

    Article  ADS  Google Scholar 

  218. M. Tanabashi et al. [Particle Data Group], “Review of particle physics,” Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  219. I. Levine et al. [TOPAZ Collab.], “Measurement of the electromagnetic coupling at large momentum transfer, "Phys. Rev. Lett. 78, 424 (1977).

    Article  ADS  Google Scholar 

  220. M. Acciarri et al. [L3 Collab.], “Measurement of the running of the fine structure constant,” Phys. Lett. B 476, 40 (2000).

    Article  ADS  Google Scholar 

  221. G. Abbiendi et al. [OPAL Collab.], “Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP,” Eur. Phys. J. C 45, 1 (2006).

    Article  Google Scholar 

  222. A. D. Martin, R. G. Roberts, W. J. Stirling, et al., “Parton distributions incorporating QED contributions,” Eur. Phys. J. C 39, 155 (2005).

    Article  ADS  Google Scholar 

  223. M. A. G. Aivazis, J. C. Collins, F. I. Olness, and W. K. Tung, “Leptoproduction of heavy quarks. 2. A unified QCD formulation of charged and neutral current processes from fixed target to collider energies,” Phys. Rev. D 50, 3102 (1994).

    Article  ADS  Google Scholar 

  224. E. Boos et al. [CompHEP Collab.], “CompHEP 4.4: Automatic computations from Lagrangians to events,"Nucl. Instrum. Methods Phys. Res., Sect. A 534, 250 (2004).

    Google Scholar 

  225. A. Pukhov et al., “CompHEP: A package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33,” arXiv:hep-ph/9908288.

  226. F. Scheck, “Muon physics,” Phys. Rept. 44, 187 (1978).

    Article  ADS  Google Scholar 

  227. W. Fetscher and H. J. Gerber, “Precision measurements in muon and tau decays,” Adv. Ser. Direct. High Energy Phys. 14, 657 (1995).

    Article  ADS  Google Scholar 

  228. W. Fetscher, H. J. Gerber, and K. F. Johnson, “Muon decay: Complete determination of the interaction and comparison with the Standard Model,” Phys. Lett. B 173, 102 (1986).

    Article  ADS  Google Scholar 

  229. G. W. Bennett et al. [Muon G–2 Collab.], “Final report of the muon E821 anomalous magnetic moment measurement at BNL,” Phys. Rev. D 73, 072003 (2006).

    Article  ADS  Google Scholar 

  230. A. Barczyk et al. [FAST Collab.], “Measurement of the Fermi constant by FAST,” Phys. Lett. B 663, 172. (2008).

    Article  Google Scholar 

  231. D. B. Chitwood et al. [MuLan Collab.], “Improved measurement of the positive muon lifetime and determination of the Fermi constant,” Phys. Rev. Lett. 99, 032001 (2007).

    Article  ADS  Google Scholar 

  232. R. P. MacDonald et al. [TWIST Collab.], “A precision measurement of the muon decay parameters \(\rho \) and \(\delta \),” Phys. Rev. D 78, 032010 (2008).

    Article  ADS  Google Scholar 

  233. B. Jamieson et al., “Measurement of P(mu)xi in polarized muon decay,” Phys. Rev. D 74, 072007 (2006).

    Article  ADS  Google Scholar 

  234. J. R. Musser et al. [TWIST Collab.], “Measurement of the Michel parameter \(\rho \) in muon decay,” Phys. Rev. Lett. 94, 101805 (2005).

    Article  ADS  Google Scholar 

  235. N. Danneberg et al., “Muon decay: Measurement of the transverse polarization of the decay positrons and its implications for the Fermi coupling constant and time reversal invariance,” Phys. Rev. Lett. 94, 021802 (2005).

    Article  ADS  Google Scholar 

  236. D. M. Webber et al. [MuLan Collab.], “Measurement of the positive muon lifetime and determination of the Fermi constant to part-per-million precision,” Phys. Rev. Lett. 106, 041803 (2011).

    Article  ADS  Google Scholar 

  237. B. Lauss, “Fundamental measurements with muons—view from PSI,” Nucl. Phys. A 827, 401 (2009).

    Article  ADS  Google Scholar 

  238. Y. Okada, K. Okumura, and Y. Shimizu, “μ \( \to \) e γ and μ \( \to \) 3 e processes with polarized muons and supersymmetric grand unified theories,” Phys. Rev. D 61, 094001 (2000).

    Article  ADS  Google Scholar 

  239. R. Bayes et al. [TWIST Collab.], “Experimental constraints on left-right symmetric models from muon decay,” Phys. Rev. Lett. 106, 041804 (2011).

    Article  ADS  Google Scholar 

  240. T. van Ritbergen and R. G. Stuart, “On the precise determination of the Fermi coupling constant from the muon lifetime, " Nucl. Phys. B 564, 343 (2000).

    Article  ADS  Google Scholar 

  241. S. M. Berman and A. Sirlin, “Some considerations on the radiative corrections to muon and neutron decay,” Ann. Phys. 20, 20 (1962).

    Article  ADS  Google Scholar 

  242. K. Nakamura et al. [Particle Data Group], “Review of particle physics,” J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  243. W. J. Marciano and A. Sirlin, “Electroweak radiative corrections to tau decay,” Phys. Rev. Lett. 61, 1815 (1988).

    Article  ADS  Google Scholar 

  244. A. Sirlin, “Radiative corrections in the SU(2)-L X U(1) theory: A simple renormalization framework,” Phys. Rev. D 22, 971 (1980).

    Article  ADS  Google Scholar 

  245. W. J. Marciano, “Fermi constants and new physics,” Phys. Rev. D 60, 093006 (1999).

    Article  ADS  Google Scholar 

  246. T. Kinoshita and A. Sirlin, “Radiative corrections to Fermi interactions,” Phys. Rev. 113, 1652 (1959).

    Article  ADS  Google Scholar 

  247. R. E. Behrends, R. J. Finkelstein, and A. Sirlin, “Radiative corrections to decay processes,” Phys. Rev. 101, 866 (1956).

    Article  ADS  MATH  Google Scholar 

  248. S. M. Berman, “Radiative corrections to muon and neutron decay,” Phys. Rev. 112, 267 (1958).

    Article  ADS  Google Scholar 

  249. W. J. Marciano, G. C. Marques, and N. Papanicolaou, “On infrared problems in muon decay,” Nucl. Phys. B 96, 237 (1975).

    Article  ADS  Google Scholar 

  250. M. Fischer, S. Groote, J. G. Korner, and M. C. Mauser, “Leptonic mu and tau decays: Mass effects, polarization effects and O(alpha) radiative corrections,” Phys. Rev. D 67, 13008 (2003).

    Article  Google Scholar 

  251. Y. Nir, “The mass ratio M(C)/M(B) in semileptonic B decays,” Phys. Lett. B B221, 184 (1989).

    Article  ADS  Google Scholar 

  252. A. Pak and A. Czarnecki, “Mass effects in muon and semileptonic b \( \to \)c decays,” Phys. Rev. Lett. 100, 241807 (2008).

    Article  ADS  Google Scholar 

  253. I. Beltrami et al., “Muon decay: Measurement of the integral asymmetry parameter,” Phys. Lett. B 194, 326 (1987).

    Article  ADS  Google Scholar 

  254. A. Arbuzov, A. Czarnecki, and A. Gaponenko, “Muon decay spectrum: Leading logarithmic approximation,” Phys. Rev. D 65, 113006 (2002).

    Article  ADS  Google Scholar 

  255. E. Bartos, E. A. Kuraev, and M. Secansky, “Radiative corrections to muon decay in leading and next to leading approximation for electron spectrum,” Phys. Part. Nucl. Lett. 6, 365 (2009).

    Article  Google Scholar 

  256. C. Anastasiou, K. Melnikov, and F. Petriello, “The electron energy spectrum in muon decay through O(\({{\alpha }^{2}}\)),” JHEP 0709, 014 (2007).

  257. T. van Ritbergen and R. G. Stuart, “Complete 2-loop quantum electrodynamic contributions to the muon lifetime in the Fermi model,” Phys. Rev. Lett. 82, 488 (1999).

    Article  ADS  Google Scholar 

  258. M. Steinhauser and T. Seidensticker, “Second order corrections to the muon lifetime and the semileptonic B decay,” Phys. Lett. B 467, 271 (1999).

    Article  ADS  Google Scholar 

  259. M. Roos and A. Sirlin, “Remarks on the radiative corrections of order alpha-squared to muon decay and the determination of g(mu),” Nucl. Phys. B 29, 296 (1971).

    Article  ADS  Google Scholar 

  260. L. Michel, “Interaction between four half spin particles and the decay of the mu meson,” Proc. Phys. Soc. A 63, 514 (1950).

    Article  ADS  MATH  Google Scholar 

  261. C. Bouchiat and L. Michel, “Theory of mu-meson decay with the hypothesis of nonconservation of parity,” Phys. Rev. 106, 170 (1957).

    Article  ADS  Google Scholar 

  262. T. Kinoshita and A. Sirlin, “Polarization of electrons in muon decay with general parity-nonconserving interactions,” Phys. Rev. 108, 844 (1957).

    Article  ADS  MATH  Google Scholar 

  263. A. Gaponenko et al. [TWIST Collab.], “Measurement of the muon decay parameter delta,” Phys. Rev. D 71, 071101 (2005).

    Article  ADS  Google Scholar 

  264. A. I. Davydychev, K. Schilcher, and H. Spiesberger, “Hadronic corrections at O(alpha**2) to the energy spectrum of muon decay,” Eur. Phys. J. C 19, 99 (2001).

    Article  ADS  Google Scholar 

  265. A. M. Sachs and A. Sirlin, in Muon Physics, Ed. by C. Wu and V. Hughes (Academic Press, NY, 1977), Vol. 2, p. 49.

    Google Scholar 

  266. M. Quraan et al., “A precision measurement of muon decay,” Nucl. Phys. A 663, 903 (2000).

    Article  ADS  Google Scholar 

  267. N. L. Rodning et al., “TWIST—the TRIUMF weak interaction symmetry test: The Michel parameters from mu+ decay,” Nucl. Phys. Proc. Suppl. 98, 247 (2001).

    Article  ADS  Google Scholar 

  268. A. B. Arbuzov, E. A. Kuraev, N. P. Merenkov, and N. V. Makhaldiani, “Five lepton decay modes of mu and tau mesons,” JETP Lett. 57, 758 (1993).

    ADS  Google Scholar 

  269. M. Fael and C. Greub, “Next-to-leading order prediction for the decay \(\mu \to e\left( {{{e}^{ + }}{{e}^{ - }}} \right)\nu \bar {\nu }\),” JHEP 1701, 084 (2017).

  270. G. M. Pruna, A. Signer, and Y. Ulrich, “Fully differential NLO predictions for the rare muon decay,” Phys. Lett. B 765, 280 (2017).

    Article  ADS  Google Scholar 

  271. A. B. Arbuzov and T. V. Kopylova, “Michel parameters in radiative muon decay,” JHEP. 1609, 109 (2016).

    Article  ADS  Google Scholar 

  272. M. Fael, L. Mercolli, and M. Passera, “Radiative \(\mu \) and \(\tau \) leptonic decays at NLO,” JHEP 1507, 153 (2015).

    Article  ADS  Google Scholar 

  273. G. M. Pruna, A. Signer, and Y. Ulrich, “Fully differential NLO predictions for the radiative decay of muons and taus,” Phys. Lett. B 772, 452 (2017).

    Article  ADS  Google Scholar 

  274. A. Abdesselam et al. [Belle Collab.], “Measurement of Michel parameters (\(\bar {\eta }\), \(\xi \kappa \)) in the radiative leptonic decay of tau at Belle,” Nucl. Part. Phys. Proc. 287-288, 11 (2017).

    Article  Google Scholar 

  275. E. Frlez et al., “Design, commissioning and performance of the PIBETA detector at PSI,” Nucl. Instrum. Methods Phys. Res., Sect. A 526, 300 (2004).

    Google Scholar 

  276. E. Barberio and Z. Was, “PHOTOS: A universal Monte Carlo for QED radiative corrections. Version 2.0,” Comput. Phys. Commun. 79, 291 (1994).

    Article  ADS  Google Scholar 

  277. G. Balossini, C. M. Carloni Calame, G. Montagna, O. Nicrosini, and F. Piccinini, “Matching perturbative and parton shower corrections to Bhabha process at flavour factories,” Nucl. Phys. B 758, 227 (2006).

    Article  ADS  Google Scholar 

  278. L. Barze, G. Montagna, P. Nason, O. Nicrosini, and F. Piccinini, “Implementation of electroweak corrections in the POWHEG BOX: Single W production,” JHEP 1204, 037 (2012).

  279. A. Devoto and D. W. Duke, “Table of integrals and formulae for Feynman diagram calculations,” Riv. Nuovo Cim. 7, 1–39 (1984).

    Article  MathSciNet  Google Scholar 

  280. A. B. Arbuzov, “Tables of convolution integrals,” arXiv:hep-ph/0304063.

  281. A. B. Arbuzov and E. S. Scherbakova, “QED collinear radiation factors in the next-to-leading logarithmic approximation,” Phys. Lett. B 660, 37 (2008).

    Article  ADS  Google Scholar 

  282. S. Wolfram, Mathematica: A System for Doing Mathematics by Computer (Addison-Wesley Publishing Company Inc., 1998).

    MATH  Google Scholar 

  283. K. S. Kölbig, J. A. Mignaco, and E. Remiddi, “On Nielsen’s generalized polylogarithms and their numerical calculation,” BIT 10, 38 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  284. L. Lewin, Polylogarithms and Associated Functions (Elsevier Science, North-Holland-New York, 1981).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Arbuzov.

Additional information

Translated by M. Samokhina

Appendices

TABLE OF CONVOLUTION INTEGRALS

In many applications, in particular, in the case of a factorization into two or more functions, there arises a problem of finding an analytical expression for an integral of the product of two functions of a single argument, varying within the limits from 0 to 1. This situation is typical when considering perturbative expansions of evolution equations in the renormalization group approach.

The problem of a search for the integral convolution of a product of two functions is solved rather frequently by a method of moments using Mellin transformations. In the space of moments, a result of convolution, more specifically, its moment, is found as a product of the specified functions. Therefore, this method allows problems of the type under study to be solved systematically with the possibility of constructing a general algorithm and its implementation in the form of a computer program. However, this method contains a number of auxiliary steps, including, in particular, inverse Mellin transformations, which can be rather laborious. Moreover, in realistic cases it may be necessary to shift integration limits for separation of a certain region of the physical phase space. Additionally, in especially complicated functions, the convolutions completely or partially have to be found numerically, which does not fit well in the algorithm of the method of moments.

Here, an approach to finding convolutions by the direct integration method is presented, which works well for a wide class of functions, arising in problems, solved by the method of perturbation theory.

Let us consider two functions \(f(x)\) and \(g(y)\), defined on the interval \(0 \leqslant x,\,\,y \leqslant 1.\) Their convolution is determined as follows:

$$\begin{gathered} \text{[}f \otimes g](z) = \int\limits_0^1 {{\text{d}}x} \int\limits_0^1 {{\text{d}}y} \delta (z - xy)f(x)g(y) \\ = \int\limits_z^1 {\frac{{{\text{d}}x}}{x}} f(x)g\left( {\frac{z}{x}} \right), \\ \end{gathered} $$
((A.1))

where \(0 \leqslant z \leqslant 1.\)

Sometimes it is necessary to find a convolution of special functions. In particular, the functions, defined using the so-called plus-prescription. This prescription specifies a rule of regularization of pole singularity at the point \(x = 1\):

$$\begin{gathered} \int\limits_{{{x}_{{{\text{min}}}}}}^1 {{\text{d}}x} {{[f(x)]}_{ + }}g(x) \\ = \int\limits_0^1 {{\text{d}}x} f(x)[g(x)\Theta (x - {{x}_{{{\text{min}}}}}) - g(1)], \\ \Theta (x) = \left\{ {\begin{array}{*{20}{c}} {1\,\,\,\,{\text{for}}\,\,\,\,x \geqslant 0} \\ {0\,\,\,\,{\text{for}}\,\,\,\,x < 0} \end{array}} \right.,\,\,\,\,0 \leqslant {{x}_{{{\text{min}}}}} < 1. \\ \end{gathered} $$
((A.2))

Integrals of functions having poles at the points \(x = z\) or \(x = 1\) diverge. They can be regularized by introducing the small auxiliary parameter \(\Delta \ll 1.\) Moreover, as a result of specific calculations, the terms depending on this parameter should cancel out. A physical meaning of the parameter, separating phase spaces of the soft and hard bremsstrahlung, can also be assigned to this parameter. However, there is an unambiguous correspondence between the methods of \(\Delta \)-regularization and plus-prescription (A.2):

$$\begin{gathered} {{[f(x)]}_{ + }} = \mathop {\lim}\limits_{\Delta \to 0} [\delta (1 - x){{f}_{\Delta }} + \Theta (1 - \Delta - x){{f}_{\Theta }}(x)], \\ {{f}_{\Delta }} = - \int\limits_0^{1 - \Delta } {{\text{d}}x} f(x),\,\,\,\,{{f}_{\Theta }}(x) = {{\left. {f(x)} \right|}_{{x < 1}}}. \\ \end{gathered} $$
((A.3))

We will call \({{f}_{\Delta }}\) and \({{f}_{\Theta }}(x)\) as the Δ- and Θ-parts of the special function \(f(x),\) respectively. The second realization of the plus-prescription is convenient both in the case of analytical calculations and in the numerical calculation, where the first definition is certainly inapplicable directly, since it allows the appearance of zero in the denominator of the integrand. Below, it is shown how the \(\Delta \)-regularization of the divergent integral can be used systematically by making a check of the cancellation of the dependence on the auxiliary parameter after summing the contributions of the Δ- and Θ-parts, as, e.g., in (A.3).

To find the Δ-parts of the specified function, it is possible to use a table of definite integrals over the interval \(0 < x < 1 - \Delta {\kern 1pt} .\) For integrals of nonsingular functions, a full interval \(0 < x < 1\) is taken, and the relevant values can be found in many tables, see, e.g., [279]. A convolution of two scalar functions, regularized using the plus-prescription, can be presented as

$$\begin{gathered} \text{[}{{[f]}_{ + }} \otimes {{[g]}_{ + }}](z) = \mathop {\lim}\limits_{\Delta \to 0} \left\{ {\int\limits_{{z \mathord{\left/ {\vphantom {z {(1}}} \right. \kern-0em} {(1}} - \Delta )}^{1 - \Delta } {\frac{{{\text{d}}x}}{x}} } \right.{{f}_{\Theta }}(x){{g}_{\Theta }}\left( {\frac{z}{x}} \right) \\ \left. {\frac{{^{{^{{}}}}}}{{_{{_{{}}}}}} + \,\,{{f}_{\Delta }}{{g}_{\Theta }}(z) + {{f}_{\Theta }}(z){{g}_{\Delta }}} \right\}. \\ \end{gathered} $$
((A.4))

We first consider integrals of singular functions, which we regularize by the parameter \(\Delta \ll 1,\) leaving the dependence on it only in the logarithm argument:

$$\begin{gathered} \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{l{{n}^{n}}(1 - x)}}{{1 - x}} = \frac{1}{{n + 1}}l{{n}^{{n + 1}}}(1 - z) \\ - \,\,\frac{1}{{n + 1}}l{{n}^{{n + 1}}}\Delta ,\,\,\,\,n = 0,1,2, \ldots \\ \end{gathered} $$
((A.5))
$$\begin{gathered} \int\limits_{{z \mathord{\left/ {\vphantom {z {(1}}} \right. \kern-0em} {(1}} - \Delta )}^{1 - \Delta } {{\text{d}}x} \frac{1}{{x - z}} = - \ln\Delta + \ln(1 - z) - \ln{z}, \\ \int\limits_{{z \mathord{\left/ {\vphantom {z {(1}}} \right. \kern-0em} {(1}} - \Delta )}^{1 - \Delta } {{\text{d}}x} \frac{{\ln{x}}}{{x - z}} = - \ln\Delta \ln{z} + {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) \\ + \,\,\ln(1 - z)\ln{z} - \frac{1}{2}{{\ln}^{2}}z,\,\,\,\,\int\limits_{{z \mathord{\left/ {\vphantom {z {(1}}} \right. \kern-0em} {(1}} - \Delta )}^{1 - \Delta } {{\text{d}}x} \frac{{\ln(1 - x)}}{{x - z}} \\ = - \ln\Delta \ln(1 - z) - \ln(1 - z)\ln{z} + {{\ln}^{2}}(1 - z) - \zeta (2), \\ \int\limits_{{z \mathord{\left/ {\vphantom {z {(1}}} \right. \kern-0em} {(1}} - \Delta )}^{1 - \Delta } {{\text{d}}x} \frac{{{{\ln}^{2}}x}}{{x - z}} = - ln\Delta {{\ln}^{2}}z + 2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) \\ + \,\,2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln{z} + \ln(1 - z){{\ln}^{2}}z - \frac{1}{3}{{\ln}^{3}}z, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{{{\ln}^{2}}(1 - x)}}{{x - z}} = - \ln\Delta {{\ln}^{2}}(1 - z) + {{\ln}^{3}}(1 - z) \\ - \,\,{{\ln}^{2}}(1 - z)\ln{z} - 2\zeta (2)\ln(1 - z) + 2\zeta (3), \\ \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{ln(1 - x)\ln{x}}}{{x - z}} = - ln\Delta ln(1 - z)\ln{z} \\ + \,\,2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) - {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) + {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)ln(1 - z) \\ + \,\,{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln{z} + {{\ln}^{2}}(1 - z)\ln{z} \\ - \,\,\frac{1}{2}\ln(1 - z){{\ln}^{2}}z - \zeta (2)\ln{z}, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)}}{{x - z}} = {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)(\ln(1 - z) \\ - \,\,\ln{z} - \ln\Delta ) - {{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) - {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right), \\ \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{3}}\left( {1 - x} \right)}}{{x - z}} = {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right)(\ln(1 - z) \\ - \,\,\ln{z} - \ln\Delta ) - {{{\text{S}}}_{{2,2}}}\left( {1 - z} \right) - {\text{L}}{{{\text{i}}}_{4}}\left( {1 - z} \right), \\ \end{gathered} $$
((A.6))
$$\begin{gathered} \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{{{{\text{S}}}_{{1,2}}}\left( {1 - x} \right)}}{{x - z}} = {{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)(\ln(1 - z) - \ln{z} \\ - \ln\Delta ) + {{{\text{S}}}_{{2,2}}}\left( {1 - z} \right) - 2{{{\text{S}}}_{{1,3}}}\left( {1 - z} \right) - \frac{1}{2}{{\left( {{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)} \right)}^{2}}, \\ \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)ln(1 - x)}}{{x - z}} = {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z) \\ \times \,\,(\ln(1 - z) - \ln{z} - \ln\Delta ) + {\text{L}}{{{\text{i}}}_{4}}\left( {1 - z} \right) - 2{{{\text{S}}}_{{2,2}}}\left( {1 - z} \right) \\ + \,\,\frac{1}{2}{{\left( {{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)} \right)}^{2}} - {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right)\ln(1 - z) \\ - \,\,{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln(1 - z) - \zeta (2){\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right), \\ \end{gathered} $$
$$\begin{gathered} \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)\ln{x}}}{{x - z}} = {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln{z}(\ln(1 - z) \\ - \ln{z} - \ln\Delta ) + 4{{{\text{S}}}_{{1,3}}}\left( {1 - z} \right) - 4{{{\text{S}}}_{{2,2}}}\left( {1 - z} \right) \\ + \,\,{{\left( {{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)} \right)}^{2}} - {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right)\ln{z} \\ + \,\,{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln{z} + \frac{1}{2}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right){{\ln}^{2}}z, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{{{\ln}^{2}}(1 - x)\ln{x}}}{{x - z}} = - \ln\Delta {{\ln}^{2}}(1 - z)\ln{z} \\ + \,\,2{\text{L}}{{{\text{i}}}_{4}}\left( {1 - z} \right) - {{\left( {{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)} \right)}^{2}} - 2{\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) \\ \times \,\,(\ln(1 - z) + \ln{z}) + 4{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln(1 - z) \\ + \,\,2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z)\ln{z} + {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right){{\ln}^{2}}(1 - z) \\ + \,\,{{\ln}^{3}}(1 - z)\ln{z} - \frac{1}{2}{{\ln}^{2}}(1 - z){{\ln}^{2}}z \\ - \,\,2\zeta (2)\ln(1 - z)\ln{z} + 2\zeta (3)\ln{z}, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{\ln(1 - x){{\ln}^{2}}x}}{{x - z}} = - \ln\Delta \ln(1 - z){{\ln}^{2}}z \\ + \,\,2{{{\text{S}}}_{{2,2}}}\left( {1 - z} \right) - {{\left( {{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)} \right)}^{2}} - 2{\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right)\ln{z} \\ + \,\,2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)(ln(1 - z) + \ln{z}) + 2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) \\ \times \,\,\ln(1 - z)\ln{z} + {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right){{\ln}^{2}}z + {{\ln}^{2}}(1 - z){{\ln}^{2}}z \\ - \,\,\frac{1}{3}\ln(1 - z){{\ln}^{3}}z - \zeta (2){{\ln}^{2}}z, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{{{\ln}^{3}}(1 - x)}}{{x - z}} = {{\ln}^{3}}(1 - z)(\ln(1 - z) - \ln{z} - \ln\Delta ) \\ - \,\,3\zeta (2){{\ln}^{2}}(1 - z) + 6\zeta (3)\ln(1 - z) - 6\zeta (4), \\ \int\limits_{{z \mathord{\left/ {\vphantom {z {(1 - \Delta )}}} \right. \kern-0em} {(1 - \Delta )}}}^{1 - \Delta } {{\text{d}}x} \frac{{{{\ln}^{3}}x}}{{x - z}} = - \ln\Delta {{\ln}^{3}}z + 6{{{\text{S}}}_{{1,3}}}\left( {1 - z} \right) \\ + \,\,6{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln{z} + 3{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right){{\ln}^{2}}z \\ + \,\,\ln(1 - z){{\ln}^{3}}z - \frac{1}{4}l{{n}^{4}}z. \\ \end{gathered} $$

The following set of integrals of convolution of nonsingular functions was used in [45, 68, 93, 110] and other works in obtaining analytical expressions for higher-order corrections in LLA and NLLA:

$$\begin{gathered} \int\limits_z^1 {{\text{d}}x{{x}^{n}}} = \frac{1}{{n + 1}}(1 - {{z}^{{n + 1}}}),\,\,\,\,n \ne - 1, \\ \int\limits_z^1 {{\text{d}}x} \frac{{l{{n}^{n}}x}}{x} = - \frac{1}{{n + 1}}l{{n}^{{n + 1}}}z,\,\,\,\,n = 0,1,2, \ldots \\ \int\limits_z^1 {{\text{d}}x} \frac{{l{{n}^{n}}(1 - x)}}{x} = {{( - 1)}^{n}}n![\zeta (n + 1) - {{{\text{S}}}_{{1,n}}}\left( z \right)], \\ n = 1,2,3, \ldots \\ \int\limits_z^1 {{\text{d}}x} \frac{{\ln(1 - x)\ln{x}}}{x} = {{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) - \frac{1}{2}\ln(1 - z){{\ln}^{2}}z, \\ \int\limits_z^1 {{\text{d}}x} \int\limits_{}^{} {{x}^{n}}\ln{x} = - \frac{{{{z}^{{n + 1}}}}}{{n + 1}}\ln{z} - \frac{1}{{{{{(n + 1)}}^{2}}}}(1 - {{z}^{{n + 1}}}), \\ n = 0,1,2, \ldots \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{\ln{x}}}{{{{x}^{n}}}} = \frac{1}{{{{z}^{{n - 1}}}{{{(n - 1)}}^{2}}}}((n - 1)\ln{z} + 1 - {{z}^{{n - 1}}}), \\ n = 2,3,4, \ldots \\ \int\limits_z^1 {{\text{d}}x} \frac{{l{{n}^{n}}x}}{{1 - x}} = {{( - 1)}^{n}}n!{{{\text{S}}}_{{1,n}}}\left( {1 - z} \right),\,\,\,\,n = 1,2,3, \ldots \\ \int\limits_z^1 {{\text{d}}x} \frac{{\ln(1 - x)\ln{x}}}{{1 - x}} = {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) - {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z), \\ \int\limits_z^1 {{\text{d}}x} {{x}^{n}}\ln(1 - x) = \frac{{1 - {{z}^{{n + 1}}}}}{{n + 1}}\ln(1 - z) \\ + \,\,\frac{1}{{n + 1}}\left( {\sum\limits_{k = 1}^{n + 1} {\frac{{{{z}^{k}}}}{k}} - {{{\text{S}}}_{1}}\left( {n + 1} \right)} \right),\,\,\,\,n = 0,1,2, \ldots \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{\ln(1 - x)}}{{{{x}^{2}}}} = \ln{z} + \frac{{1 - z}}{z}\ln(1 - z), \\ \int\limits_z^1 {{\text{d}}x} \frac{{\ln(1 - x)}}{{{{x}^{n}}}} = \frac{1}{{n - 1}}\left( {\ln{z} + \frac{{1 - {{z}^{{n - 1}}}}}{{{{z}^{{n - 1}}}}}} \right.\ln(1 - z) \\ - \,\,\sum\limits_{k = 1}^{n - 2} {\frac{1}{{k{{z}^{k}}}}} + {{{\text{S}}}_{1}}\left( {n - 2} \right)),\,\,\,\,n = 3,4,5, \ldots \\ \int\limits_z^1 {{\text{d}}x} {{x}^{n}}{{\ln}^{2}}x = \frac{2}{{{{{(n + 1)}}^{3}}}}(1 - {{z}^{{n + 1}}}) \\ + \,\,\frac{{2{{z}^{{n + 1}}}}}{{{{{(n + 1)}}^{2}}}}lnz - \frac{{{{z}^{{n + 1}}}}}{{n + 1}}{{\ln}^{2}}z,\,\,\,\,n \ne - 1, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} {{x}^{n}}{{\ln}^{2}}(1 - x) = \frac{{1 - {{z}^{{n + 1}}}}}{{n + 1}}{{\ln}^{2}}(1 - z) \\ + \,\,\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{c}} n \\ k \end{array}} \right)} {{( - 1)}^{k}} \times \,\,\frac{{{{{(1 - z)}}^{{k + 1}}}}}{{{{{(k + 1)}}^{2}}}}\left( {\frac{2}{{k + 1}} - 2\ln(1 - z)} \right), \\ n = 0,1,2, \ldots \\ \int\limits_z^1 {{\text{d}}x} {{x}^{n}}\ln(1 - x)\ln{x} = - \frac{1}{{n + 1}}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) \\ - \,\,\frac{{{{z}^{{n + 1}}}}}{{n + 1}}\ln(1 - z)\ln{z} - \frac{{1 - {{z}^{{n + 1}}}}}{{{{{(n + 1)}}^{2}}}}\ln(1 - z) \\ + \,\,\frac{1}{{n + 1}}\ln{z}\sum\limits_{k = 1}^{n + 1} {\frac{{{{z}^{k}}}}{k}} + \frac{1}{{{{{(n + 1)}}^{2}}}} \\ \times \,\,\sum\limits_{k = 1}^{n + 1} {(1 - {{z}^{k}})} \frac{{n + k + 1}}{{{{k}^{2}}}}, \\ n = 0,1,2, \ldots \\ \end{gathered} $$
((A.7))
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{\ln{x}\ln(1 - x)}}{{{{x}^{n}}}} = \frac{1}{{n - 1}}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) + \frac{{\ln{z}ln(1 - z)}}{{{{z}^{{n - 1}}}(n - 1)}} \\ + \,\,\ln{z}(\frac{1}{{{{{(n - 1)}}^{2}}}} - \frac{1}{{n - 1}}\left. {\sum\limits_{k = 1}^{n - 2} {\frac{1}{{{{z}^{k}}k}}} } \right) + \frac{{1 - {{z}^{{n - 1}}}}}{{{{z}^{{n - 1}}}{{{(n - 1)}}^{2}}}}\ln(1 - z) \\ + \,\,\frac{{{{\ln}^{2}}z}}{{2(n - 1)}} - \frac{1}{{{{{(n - 1)}}^{2}}}}\sum\limits_{k = 1}^{n - 2} {\frac{{(1 - {{z}^{k}})(n + k - 1)}}{{{{z}^{k}}{{k}^{2}}}}} , \\ n = 2,3,4, \ldots \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{{\ln}^{2}}(1 - x)}}{{{{x}^{2}}}} = \frac{{1 - z}}{z}{{\ln}^{2}}(1 - z) + 2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) \\ + \,\,2\ln(1 - z)\ln{z}, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{{\ln}^{2}}(1 - x)}}{{{{x}^{n}}}} = \frac{{1 - {{z}^{{n - 1}}}}}{{(n - 1){{z}^{{n - 1}}}}}{{\ln}^{2}}(1 - z) + \frac{2}{{n - 1}} \\ \times \,\,({\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) + \ln(1 - z)\ln{z}) \\ - \,\,\frac{2}{{n - 1}}\sum\limits_{k = 2}^{n - 1} {\int\limits_z^1 {{\text{d}}x} } \frac{{\ln(1 - x)}}{{{{x}^{k}}}},\,\,\,\,n = 3,4,5, \ldots \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} {{\ln}^{2}}(1 - x)\ln{x} \\ = 2{\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) - 2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z) \\ - \,\,z{{\ln}^{2}}(1 - z)\ln{z} \\ + 2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) + 2z\ln(1 - z)\ln{z} \\ - \,\,(1 - z){{\ln}^{2}}(1 - z) + 4(1 - z) \\ \times \,\,\ln(1 - z) - 2z\ln{z} + 6z - 6, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{{\ln}^{2}}(1 - x)\ln{x}}}{x} = 2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln(1 - z) \\ - \,\,2{{{\text{S}}}_{{2,2}}}\left( {1 - z} \right) - \frac{1}{2}{{\ln}^{2}}(1 - z){{\ln}^{2}}z, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{{\ln}^{2}}(1 - x)\ln{x}}}{{{{x}^{2}}}} = - 2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) - 2{\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) \\ + \,\,2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z) + \frac{1}{z}{{\ln}^{2}}(1 - z)\ln{z} \\ + \,\,\ln(1 - z){{\ln}^{2}}z + 2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) + 2\ln(1 - z)\ln{z} \\ + \,\,\frac{{1 - z}}{z}{{\ln}^{2}}(1 - z), \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{{\ln}^{2}}(1 - x)\ln{x}}}{{1 - x}} = - 2{\text{L}}{{{\text{i}}}_{4}}\left( {1 - z} \right) + 2{\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) \\ \times \,\,\ln(1 - z) - {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right){{\ln}^{2}}(1 - z), \\ \int\limits_z^1 {{\text{d}}x} \ln(1 - x){{\ln}^{2}}x = 2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) - z\ln(1 - z) \\ \times \,\,{{\ln}^{2}}z + 2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) + 2z\ln(1 - z)\ln{z} \\ + \,\,z{{\ln}^{2}}z + 2(1 - z)\ln(1 - z) - 4z\ln{z} + 6z - 6, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{\ln(1 - x){{\ln}^{2}}x}}{x} = - 2{{{\text{S}}}_{{1,3}}}\left( {1 - z} \right) - \frac{1}{3}\ln(1 - z){{\ln}^{3}}z, \\ \int\limits_z^1 {{\text{d}}x} \frac{{\ln(1 - x){{\ln}^{2}}x}}{{{{x}^{2}}}} = - 2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) + \frac{1}{z}\ln(1 - z) \\ \times \,\,{{\ln}^{2}}z + \frac{1}{3}{{\ln}^{3}}z + 2{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) + \frac{2}{z}\ln(1 - z)\ln{z} \\ + \,\,{{\ln}^{2}}z + 2\frac{{1 - z}}{z}\ln(1 - z) + 2\ln{z}, \\ \int\limits_z^1 {{\text{d}}x} \frac{{\ln(1 - x){{\ln}^{2}}x}}{{1 - x}} \\ = - 2{{{\text{S}}}_{{2,2}}}\left( {1 - z} \right) + 2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln(1 - z), \\ \int\limits_z^1 {{\text{d}}x} {{\ln}^{3}}(1 - x) = (1 - z)({{\ln}^{3}}(1 - z) - 3{{\ln}^{2}}(1 - z) \\ + \,\,6ln(1 - z) - 6), \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{{\ln}^{3}}(1 - x)}}{{{{x}^{2}}}} = - 6{\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) + 6{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z) \\ + \,\,3{{\ln}^{2}}(1 - z)\ln{z} + \frac{{1 - z}}{z}{{\ln}^{3}}(1 - z), \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} {{\ln}^{3}}x = - z{{\ln}^{3}}z + 3z{{\ln}^{2}}z - 6z\ln{z} + 6z - 6, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{{\ln}^{3}}x}}{{{{x}^{2}}}} = \frac{1}{z}({{\ln}^{3}}z + 3{{\ln}^{2}}z + 6\ln{z} - 6z + 6). \\ \end{gathered} $$

By means of identical transformations (see Appendix B), we can simplify arguments of polylogarithmic functions to the form \((1 - x)\). In the integrands, we perform the same simplification. We note that there are certain arguments in favor of selection of the form \((1 - x)\) for the argument, which seems, at first sight, less convenient than simply \(x\). In most applications, the point \(x = 1\) corresponds to the singularity (regularized somehow) of structure functions or fragmentation functions. We recall, e.g., the nonsinglet splitting function in the lower order

$${{P}^{{(0)}}}(x) = \mathop {\left[ {\frac{{1 + {{x}^{2}}}}{{1 - x}}} \right]}\nolimits_ + .$$
((A.8))

Thus, in analytical results obtained by convolution the limit \(x \to 1\) has a fundamental value. Our chosen method of reducing the arguments of polylogarithmic functions simplifies the analysis of the behavior of the result in this limit. In any case, the transformation of functions depending on \((1 - x)\) to those having \(x\) as an argument can be done using the formulas of the same set, presented in Appendix B.

The main integrals of polylogarithmic functions include the following:

$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} {{x}^{n}}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right) = \frac{{1 - {{z}^{{n + 1}}}}}{{n + 1}}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) - \frac{1}{{n + 1}} \\ \times \,\,\sum\limits_{k = 1}^{n + 1} {\left( {\frac{{{{z}^{k}}}}{k}\ln{z} + \frac{{1 - {{z}^{k}}}}{{{{k}^{2}}}}} \right)} ,\,\,\,\,n = 0,1,2, \ldots \\ \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)}}{{1 - x}} = {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right), \\ \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)}}{x} = - 2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) - {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln{z}, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)}}{{{{x}^{n}}}} = \frac{{1 - {{z}^{{n - 1}}}}}{{{{z}^{{n - 1}}}(n - 1)}}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) + \frac{1}{{n - 1}} \\ \times \,\,\left[ {\sum\limits_{k = 1}^{n - 2} {\left( {\frac{{1 - {{z}^{k}}}}{{{{z}^{k}}{{k}^{2}}}} + \frac{{\ln{z}}}{{{{z}^{k}}k}}} \right)} - \frac{1}{2}{{\ln}^{2}}z} \right],\,\,\,\,n = 2,3,4, \ldots \\ \int\limits_z^1 {{\text{d}}x} {\text{L}}{{{\text{i}}}_{3}}\left( {1 - x} \right) = (1 - z){\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) \\ - \,\,(1 - z){\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) + z\ln{z} + 1 - z, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{3}}\left( {1 - x} \right)}}{x} = - {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right)\ln{z} - \frac{1}{2}{{\left( {{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)} \right)}^{2}}, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{3}}\left( {1 - x} \right)}}{{{{x}^{2}}}} = \frac{{1 - z}}{z}{\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) \\ + \,\,2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) + {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln{z}, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{3}}\left( {1 - x} \right)}}{{1 - x}} = {\text{L}}{{{\text{i}}}_{4}}\left( {1 - z} \right), \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} {{{\text{S}}}_{{1,2}}}\left( {1 - x} \right) = (1 - z){{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) \\ + \,\,\frac{z}{2}{{\ln}^{2}}z - z\ln{z} + z - 1, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{{{\text{S}}}_{{1,2}}}\left( {1 - x} \right)}}{x} = - 3{{{\text{S}}}_{{1,3}}}\left( {1 - z} \right) - {{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln{z}, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{{{\text{S}}}_{{1,2}}}\left( {1 - x} \right)}}{{{{x}^{2}}}} = \frac{{1 - z}}{z}{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) + \frac{1}{6}{{\ln}^{3}}z, \\ \end{gathered} $$
((A.9))
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{{{\text{S}}}_{{1,2}}}\left( {1 - x} \right)}}{{1 - x}} = {{{\text{S}}}_{{2,2}}}\left( {1 - z} \right), \\ \int\limits_z^1 {{\text{d}}x} {\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)ln(1 - x) \\ = (1 - z){\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z) + (z - 2){\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) \\ - \,\,z\ln(1 - z)\ln{z} - (1 - z)\ln(1 - z) + 2z\ln{z} + 3 - 3z, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)\ln(1 - x)}}{x} \\ = 2{{{\text{S}}}_{{2,2}}}\left( {1 - z} \right) - \frac{1}{2}{{\left( {{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)} \right)}^{2}} \\ - \,\,2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln(1 - z) \\ - \,\,{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z)\ln{z}, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)\ln(1 - x)}}{{{{x}^{2}}}} \\ = 3{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) + {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln{z} \\ + \,\,\frac{{1 - z}}{z}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z) - \frac{1}{2}\ln(1 - z){{\ln}^{2}}z, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)\ln(1 - x)}}{{1 - x}} \\ = - {\text{L}}{{{\text{i}}}_{4}}\left( {1 - z} \right) + {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right)\ln(1 - z), \\ \int\limits_z^1 {{\text{d}}x} {\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)\ln{x} = - 2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) \\ - \,\,(z\ln{z} - z + 1){\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) - z{{\ln}^{2}}z \\ + \,\,3z\ln{z} - 3z + 3, \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)\ln{x}}}{x} = 3{{{\text{S}}}_{{1,3}}}\left( {1 - z} \right) - \frac{1}{2}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right){{\ln}^{2}}z, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)\ln{x}}}{{{{x}^{2}}}} = 2{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) \\ + \,\,\frac{1}{z}(\ln{z} - z + 1){\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) - \frac{1}{3}{{\ln}^{3}}z - \frac{1}{2}{{\ln}^{2}}z, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 - x} \right)\ln{x}}}{{1 - x}} = - \frac{1}{2}{{\left( {{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)} \right)}^{2}}. \\ \end{gathered} $$

Sometimes, the integrals of functions having \((1 + x)\) in the argument arise (we consider only real parts of these functions):

$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{1}{{1 + x}} = \ln{2} - \ln(1 + z), \\ \int\limits_z^1 {{\text{d}}x} \frac{{\ln{x}}}{{1 + x}} = {\text{L}}{{{\text{i}}}_{2}}\left( {1 + z} \right) - \frac{3}{2}\zeta (2), \\ \int\limits_z^1 {{\text{d}}x} \frac{{{{\ln}^{2}}x}}{{1 + x}} = \frac{7}{2}\zeta (3) - 2{{{\text{S}}}_{{1,2}}}\left( {1 + z} \right), \\ \int\limits_z^1 {{\text{d}}x} {\text{L}}{{{\text{i}}}_{2}}\left( {1 + x} \right) = - (1 + z){\text{L}}{{{\text{i}}}_{2}}\left( {1 + z} \right) \\ - \,\,z\ln{z} - 1 + z + 3\zeta (2), \\ \end{gathered} $$
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 + x} \right)}}{{1 + x}} \\ = - {\text{L}}{{{\text{i}}}_{3}}\left( {1 + z} \right) + \frac{7}{8}\zeta (3) + \frac{3}{2}\zeta (2)\ln{2}, \\ \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 + x} \right)}}{x} = \frac{7}{2}\zeta (3) \\ - \,\,2{{{\text{S}}}_{{1,2}}}\left( {1 + z} \right) - {\text{L}}{{{\text{i}}}_{2}}\left( {1 + z} \right)\ln{z}, \\ \end{gathered} $$
((A.10))
$$\begin{gathered} \int\limits_z^1 {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( {1 + x} \right)}}{{{{x}^{n}}}} = - \frac{3}{{2(n - 1)}}\zeta (2) \\ + \,\,\frac{1}{{{{z}^{{n - 1}}}(n - 1)}}{\text{L}}{{{\text{i}}}_{2}}\left( {1 + z} \right) - \frac{{{{{( - 1)}}^{{n - 1}}}}}{{n - 1}} \\ \times \,\,({\text{L}}{{{\text{i}}}_{2}}\left( {1 + z} \right) + \frac{1}{2}{{\ln}^{2}}z - \frac{3}{2}\zeta (2)) - \frac{1}{{n - 1}} \\ \times \,\,\sum\limits_{k = 1}^{n - 2} {{{{( - 1)}}^{{n + k}}}} \left( {\frac{{1 - {{z}^{k}}}}{{{{z}^{k}}{{k}^{2}}}} + \frac{{\ln{z}}}{{{{z}^{k}}k}}} \right),\,\,\,\,n = 2,3,4, \ldots \\ \end{gathered} $$

The above table of integrals was programmed in computer code [280] in the FORM language [166, 167]. The code makes it possible to automate operations of integration, reduction of similar terms and simplification of arguments of polylogarithmic functions. The table of integrals was applied in calculating radiative corrections to some processes of particle interactions, see, e.g., [45, 93, 110, 254, 281]. The presented set of integrals allows the convolution problems to be solved for a rather wide class of problems arising in calculation of the higher-order radiative corrections of perturbation theory in both QED and QCD. The larger part of the above integrals can be found in other literature sources, including automatic codes such as MATHEMATICA [282]. However, the consolidation of a necessary set of mathematical tools aimed at solving problems of a certain class seems to be completely appropriate and useful. Additionally, in the above expressions, the identical transformations were systematically used for the functions whose asymptotics as \(z \to 1\) can be easily seen.

Main Properties of Polylogarithms

In the derivation of analytical expressions for contributions of the logarithmic corrections under study, special mathematical functions arise systematically; in particular, polylogarithms and the Riemann zeta function. Following the notation of [279], see also [283, 284], we write the Nielsen’s polylogarithm in general terms as

$$\begin{gathered} {{{\text{S}}}_{{n,m}}}\left( z \right) = \frac{{{{{( - 1)}}^{{n + m - 1}}}}}{{(n - 1)!m!}}\int\limits_0^1 {{\text{d}}x} \frac{{l{{n}^{{n - 1}}}(x)l{{n}^{m}}(1 - xz)}}{x}, \\ n = 1,2,3 \ldots ,\,\,\,\,m = 1,2,3 \ldots \\ \end{gathered} $$
((B.1))

In particular, we define a dilogarithm, considered by Euler in 1768 and often called Spence’s function, as follows:

$${\text{L}}{{{\text{i}}}_{2}}\left( z \right) \equiv {{{\text{S}}}_{{1,1}}}\left( z \right) = - \int\limits_0^1 {{\text{d}}x} \frac{{\ln(1 - xz)}}{x}.$$
((B.2))

A typical integral, leading to the occurrence of Spence’s function, is

$$\begin{gathered} \int {{\text{d}}x} \frac{{\ln(a + bx)}}{{c + ex}} = \frac{1}{e}\left[ {\ln\left( {\frac{{ae - bc}}{e}} \right)} \right.\ln(c + ex) \\ \left. { - \,\,{\text{L}}{{{\text{i}}}_{2}}\left( { - b\frac{{c + ex}}{{ae - bc}}} \right)} \right]. \\ \end{gathered} $$
((B.3))

Additionally, polylogarithms of higher orders also were encountered in this work:

$$\begin{gathered} {{{\text{S}}}_{{1,2}}}\left( z \right) = \frac{1}{2}\int\limits_0^1 {{\text{d}}x} \frac{{{{\ln}^{2}}(1 - xz)}}{x}, \\ {\text{L}}{{{\text{i}}}_{3}}\left( z \right) \equiv {{{\text{S}}}_{{2,1}}}\left( z \right) = \int\limits_0^1 {{\text{d}}x} \frac{{\ln(x)\ln(1 - xz)}}{x} \\ = \int\limits_0^z {{\text{d}}x} \frac{{{\text{L}}{{{\text{i}}}_{2}}\left( x \right)}}{x},\,\,\,\,{\text{L}}{{{\text{i}}}_{4}}\left( z \right) \equiv {{{\text{S}}}_{{3,1}}}\left( z \right) \\ = - \frac{1}{2}\int\limits_0^1 {{\text{d}}x} \frac{{{{\ln}^{2}}(x)\ln(1 - xz)}}{x}, \\ {{{\text{S}}}_{{1,3}}}\left( z \right) = - \frac{1}{6}\int\limits_0^1 {{\text{d}}x} \frac{{{{\ln}^{3}}(1 - xz)}}{x}, \\ {{{\text{S}}}_{{2,2}}}\left( z \right) = - \frac{1}{2}\int\limits_0^1 {{\text{d}}x} \frac{{\ln(x){{\ln}^{2}}(1 - xz)}}{x}. \\ \end{gathered} $$
((B.4))

It is useful to give several particular values of the Riemann \(\zeta \)-function:

$$\begin{gathered} \zeta (n) = \sum\limits_{k = 1}^\infty {\frac{1}{{{{k}^{n}}}}} ,\,\,\,\,\zeta (2) = \frac{{{{\pi }^{2}}}}{6}, \\ \zeta (3) \approx 1.20205690315959, \\ \zeta (4) = \frac{{{{\pi }^{4}}}}{{90}},\,\,\,\,\zeta (5) \approx 1.03692775514337. \\ \end{gathered} $$
((B.5))

To transform polylogarithms from the argument \(z\) to functions of argument \((1 - z),\) the following relations were used:

$$\begin{gathered} {\text{L}}{{{\text{i}}}_{2}}\left( z \right) = - {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right) - l\ln{z}\ln(1 - z) + \zeta (2), \\ {{{\text{S}}}_{{1,2}}}\left( z \right) = - {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right) + {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z) \\ + \,\,\frac{1}{2}{{\ln}^{2}}(1 - z)\ln{z} + \zeta (3),\,\,\,{\text{L}}{{{\text{i}}}_{3}}\left( z \right) = - {{{\text{S}}}_{{1,2}}}\left( {1 - z} \right) \\ {\text{--}}\,{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln{z} - \,\,\frac{1}{2}\ln(1 - z){{\ln}^{2}}z + \zeta (2)\ln{z} + \zeta (3), \\ \end{gathered} $$
$$\begin{gathered} {{{\text{S}}}_{{1,3}}}\left( z \right) = - {\text{L}}{{{\text{i}}}_{4}}\left( {1 - z} \right) + {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right)\ln(1 - z) \\ - \,\,\frac{1}{2}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right){{\ln}^{2}}(1 - z) \\ - \frac{1}{6}{{\ln}^{3}}(1 - z)\ln{z} + \zeta (4), \\ \end{gathered} $$
((B.6))
$$\begin{gathered} {{{\text{S}}}_{{2,2}}}\left( z \right) = - {{{\text{S}}}_{{2,2}}}\left( {1 - z} \right) - {\text{L}}{{{\text{i}}}_{3}}\left( {1 - z} \right)\ln{z} \\ + \,\,{{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln(1 - z) + {\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right)\ln(1 - z)\ln{z} \\ + \,\,\frac{1}{4}{{\ln}^{2}}(1 - z){{\ln}^{2}}z + \zeta (3)\ln{z} + \frac{1}{4}\zeta (4), \\ {\text{L}}{{{\text{i}}}_{4}}\left( z \right) = - {{{\text{S}}}_{{1,3}}}\left( {1 - z} \right) - {{{\text{S}}}_{{1,2}}}\left( {1 - z} \right)\ln{z} \\ - \,\,\frac{1}{2}{\text{L}}{{{\text{i}}}_{2}}\left( {1 - z} \right){{\ln}^{2}}z - \frac{1}{6}\ln(1 - z){{\ln}^{3}}z \\ + \,\,\frac{1}{2}\zeta (2){{\ln}^{2}}z + \zeta (3)\ln{z} + \zeta (4). \\ \end{gathered} $$

The change from more complicated arguments, arising in practice, to the simplest ones \((z\) and \(1 - z)\) was also performed by methods of identical transformations, sometimes using certain additional relations between polylogarithms of more complicated arguments, e.g.,

$$\begin{gathered} {\text{L}}{{{\text{i}}}_{2}}\left( { - \frac{z}{{1 - z}}} \right) = - {\text{L}}{{{\text{i}}}_{2}}\left( z \right) - \frac{1}{2}{{\ln}^{2}}(1 - z), \\ {\text{L}}{{{\text{i}}}_{2}}({{z}^{2}}) = 2\left[ {{\text{L}}{{{\text{i}}}_{2}}\left( z \right) + {\text{L}}{{{\text{i}}}_{2}}\left( { - z} \right)} \right] \\ \end{gathered} $$
((B.7))

etc. We note that in some of the presented relations, imaginary parts are discarded, which, if necessary, can be restored using the analytic properties of relevant functions [284].

Some explicit expressions for polylogarithms of constant arguments are useful:

$$\begin{gathered} {{{\text{S}}}_{{n,m}}}\left( 0 \right) = 0,\,\,\,\,n = 1,2,3 \ldots ,\,\,\,\,m = 1,2,3 \ldots \\ {\text{L}}{{{\text{i}}}_{n}}\left( 1 \right) = \zeta (n),\,\,\,\,n = 2,3,4, \ldots \\ {{{\text{S}}}_{{2,2}}}\left( 1 \right) = \frac{1}{4}\zeta (4),\,\,\,\,{{{\text{S}}}_{{1,n}}}\left( 1 \right) = \zeta (n + 1),\,\,\,\,n = 1,2,3 \ldots \\ {\text{ReL}}{{{\text{i}}}_{2}}\left( 2 \right) = \frac{3}{2}\zeta (2),\,\,\,\,{\text{L}}{{{\text{i}}}_{2}}\left( { - 1} \right) = - \frac{1}{2}\zeta (2), \\ {\text{L}}{{{\text{i}}}_{2}}\left( {\frac{1}{2}} \right) = \frac{1}{2}\zeta (2) - \frac{1}{2}{{\ln}^{2}}2, \\ {\text{ReL}}{{{\text{i}}}_{3}}\left( 2 \right) = \frac{7}{8}\zeta (3) + \frac{3}{2}\ln{2}\zeta (2), \\ {\text{ReL}}{{{\text{i}}}_{3}}\left( { - 1} \right) = - \frac{3}{4}\zeta (3),\,\,\,\,{\text{Re}}{{{\text{S}}}_{{1,2}}}\left( 2 \right) = \frac{7}{4}\zeta (3), \\ {\text{L}}{{{\text{i}}}_{3}}\left( {\frac{1}{2}} \right) = \frac{7}{8}\zeta (3) - \frac{1}{2}\zeta (2)\ln{2} + \frac{1}{6}{{\ln}^{3}}2, \\ {{{\text{S}}}_{{1,2}}}\left( { - 1} \right) = \frac{1}{8}\zeta (3),\,\,\,\,{{{\text{S}}}_{{1,2}}}\left( {\frac{1}{2}} \right) = \frac{1}{8}\zeta (3) - \frac{1}{6}{{\ln}^{3}}2. \\ \end{gathered} $$
((B.8))

To expand the solutions to evolution equations in a series obtained in the approximation of soft bremsstrahlung, it is convenient to use the following presentation for the \(\Gamma \)-function:

$$\frac{1}{{\Gamma (z)}} = z{{{\text{e}}}^{{Cz}}}\prod\limits_{n = 1}^\infty {\left( {1 + \frac{z}{n}} \right){{{\text{e}}}^{{{{ - z} \mathord{\left/ {\vphantom {{ - z} n}} \right. \kern-0em} n}}}}} .$$
((B.9))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbuzov, A.B. Leading and Next-to-Leading Logarithmic Approximations in Quantum Electrodynamics. Phys. Part. Nuclei 50, 721–825 (2019). https://doi.org/10.1134/S1063779619060029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619060029

Navigation