Skip to main content
Log in

Interplay between Approximation Theory and Renormalization Group

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The review presents general methods for treating complicated problems that cannot be solved exactly and whose solution encounters two major difficulties. First, there are no small parameters allowing for the safe use of perturbation theory in powers of these parameters, and even when small parameters exist, the related perturbative series are strongly divergent. Second, such perturbative series in powers of these parameters are rather short, so that the standard resummation techniques either yield bad approximations or are not applicable at all. The emphasis in the review is on the methods advanced and developed by the author. One of the general methods is Optimized Perturbation Theory now widely employed in various branches of physics, chemistry, and applied mathematics. The other powerful method is Self-Similar Approximation Theory allowing for quite simple and accurate summation of divergent series. These theories share many common features with the method of renormalization group, which is briefly sketched in order to stress the similarities in their ideas and their mutual interconnection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G.A. Baker and P. Graves-Moris, Padé Approximants (Cambridge Univ., Cambridge, 1996).

    Book  MATH  Google Scholar 

  2. H. Kleinert, Path Integrals (World Sci., Singapore, 2003).

    MATH  Google Scholar 

  3. A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).

    MATH  Google Scholar 

  4. V. I. Yukalov, “Theory of perturbations with a strong interaction,” Moscow Univ. Phys. Bull. 31, 10–15 (1976).

    Google Scholar 

  5. V. I. Yukalov, “Model of a hybrid crystal,” Theor. Math. Phys. 28, 652–660 (1976).

    Article  Google Scholar 

  6. V. I. Yukalov, “Quantum crystal with jumps of particles,” Phys. A 89, 363–372 (1977).

    Article  Google Scholar 

  7. V. I. Yukalov, “Quantum theory of localized crystal,” Ann. Phys. (Leipzig) 36, 31–39 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. I. Yukalov, “Superharmonic approximation for crystal,” Ann. Phys. (Leipzig) 37, 171–182 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. I. Yukalov, “Construction of propagators for quantum crystals,” Ann. Phys. (Leipzig) 38, 419–433 (1981).

    Article  ADS  Google Scholar 

  10. V. I. Yukalov and V. I. Zubov, “Localized-particles approach for classical and quantum crystals,” Fortschr. Phys. 31, 627–672 (1983).

    Article  Google Scholar 

  11. V. I. Yukalov, “Theory of melting and crystallization,” Phys. Rev. B 32, 436–446 (1985).

    Article  ADS  Google Scholar 

  12. V. I. Yukalov and E.P. Yukalova, “Self-similar structures and fractal transforms in approximation theory,” Chaos Solit. Fract. 14, 839–861 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. V. I. Yukalov, “Self-similar renormalization near unstable fixed points,” Int. J. Mod. Phys. B 7, 1711–1730 (1993).

    Article  MathSciNet  Google Scholar 

  14. V. I. Yukalov and E.P. Yukalova, “Self-similar perturbation theory,” Ann. Phys. (N.Y., U.S.) 277, 219–254 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. W. E. Caswell, “Accurate energy levels for the anharmonic oscillator and a summable series for the double-well potential in perturbation theory,” Ann. Phys. (N.Y., U.S.) 123, 153–184 (1979).

    Article  ADS  Google Scholar 

  16. R. Seznec and J. Zinn-Justin, “Summation of divergent series by order dependent mappings: Application to the anharmonic oscillator and critical exponents in field theory,” J. Math. Phys. 20, 1398–1408 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. I. G. Halliday and P. Suranyi, “Anharmonic oscillator: A new approach,” Phys. Rev. D 21, 1529–1537 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Killingbeck, “Renormalized perturbation series,” J. Phys. A 14, 1005–1008 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. M. Stevenson, “Optimized perturbation theory,” Phys. Rev. D 23, 2916–2944 (1981).

    Article  ADS  Google Scholar 

  20. I. D. Feranchuk and L. I.Komarov, “The operator method of the approximate solution of the Schrödinger equation,” Phys. Lett. A 88, 211–214 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Okopinska, “Accurate energy levels and partition function of a quantum-mechanical anharmonic oscillator,” Phys. Rev. D 36, 1273–1275 (1987).

    Article  ADS  Google Scholar 

  22. M. Dineykhan, G. V. Efimov, G. Gandbold, and S.N. Nedelko, Oscillator Representation in Quantum Physics (Springer, Berlin, 1995).

    MATH  Google Scholar 

  23. M. Dineykhan and G. V. Efimov,”The Schrödinger equation for bound state systems in the oscillator representation,” Rep. Math. Phys. 36, 287–308 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  24. I. Feranchuk, A. Ivanov, V. H. Le, and A. Ulyanenkov, Nonperturbative Description of Quantum Systems (Springer, Cham, 2015).

    MATH  Google Scholar 

  25. V. I. Yukalov and E. P. Yukalova, “Spectral characteristics of anharmonic models in self-similar approximation,” Laser Phys. 5, 154–169 (1995).

    Google Scholar 

  26. F. T. Hioe, D. MacMillen, and E.W. Montroll, “Quantum theory of anharmonic oscillators: Energy levels of a single and a pair of coupled oscillators with quartic coupling,” Phys. Rep. 43, 305–335 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  27. V. I. Yukalov and E. P. Yukalova, “Self-similar approximations and evolution equations,” Nuovo Cimento B 108, 1017–1041 (1993).

    Article  MathSciNet  Google Scholar 

  28. I. R. C. Buckley, A. Duncan, and H.F. Jones, “Proof of the convergence of the linear δ expansion: Zero dimensions,” Phys. Rev. D 47, 2554–2559 (1993).

    Article  ADS  Google Scholar 

  29. A. Duncan and H. F. Jones, “Convergence proof for optimized expansion: Anharmonic oscillator,” Phys. Rev. D 47, 2560–2572 (1993).

    Article  ADS  Google Scholar 

  30. C. M. Bender, A. Duncan, and H.F. Jones, “Convergence of the optimized expansion for the connected vacuum amplitude: Zero dimensions,” Phys. Rev. D 49, 4219–4225 (1994).

    Article  ADS  Google Scholar 

  31. R. Guida, K. Konishi, and H. Suzuki, “Convergence of scaled δ expansion: anharmonic oscillator,” Ann. Phys. (N.Y., U.S.) 241, 152–184 (1995).

    Article  ADS  MATH  Google Scholar 

  32. E. J. Weniger, “Construction of the strong coupling expansion for the grond state energy of the quartic, sextic, and octic anharmonic oscillator via a renormalized strong coupling expansion,” Phys. Rev. Lett. 77, 2859–2862 (1996).

    Article  ADS  MATH  Google Scholar 

  33. H. Kleinert and V. I. Yukalov, “Self-similar variational perturbation theory for critical exponents,” Phys. Rev. E 71, 026131 (2005).

    Article  ADS  Google Scholar 

  34. R. R. Parwani, “Free energy of hot gauge theories,” Phys. Rev. D 64, 025002 (2001).

    Article  ADS  Google Scholar 

  35. V.I. Yukalov,”Principal problems in Bose-Einstein condensation of dilute gases,” Laser Phys. Lett. 1, 435–461 (2004).

    Article  ADS  Google Scholar 

  36. J. O. Andersen, “Theory of the weakly interacting Bose gas,” Rev. Mod. Phys. 76, 599–639 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. V. I. Yukalov and E. P. Yukalova, “Bose–Einstein condensation temperature of weakly interacting atoms,” Laser Phys. Lett. 14, 073001 (2017).

    Article  ADS  Google Scholar 

  38. P. Arnold, G. Moore, and B. Tomašik, “T c for homogeneous dilute Bose gases: A second-order result,” Phys. Rev. A 65, 013606 (2001).

    Article  ADS  Google Scholar 

  39. P. Arnold and G. Moore, “BEC transition temperature of a dilute homogeneous imperfect Bose gas,” Phys. Rev. Lett. 87, 120401 (2001).

    Article  ADS  Google Scholar 

  40. P. Arnold and G. Moore, “Monte Carlo simulation of O(2) φ4 field theory in three dimensions,” Phys. Rev. E 64, 066113 (2001).

    Article  ADS  Google Scholar 

  41. V. A. Kashurnikov, N. Prokof’ev, and B. Svistunov, “Critical temperature shift in weakly interacting Bose gas,” Phys. Rev. Lett. 87, 120402 (2001).

    Article  ADS  Google Scholar 

  42. N. Prokof’ev and B. Svistunov, “Worm algorithms for classical statistical models,” Phys. Rev. Lett. 87, 160601 (2001).

    Article  ADS  Google Scholar 

  43. F. F. de Souza Cruz, M. B. Pinto, and R.O. Ramos, “Transition temperature for weakly interacting homogeneous Bose gases,” Phys. Rev. B 64, 014515 (2001).

    Article  ADS  Google Scholar 

  44. F. F. de Souza Cruz, M. B. Pinto, R.O. Ramos, and P. Sena, “Higher-order evaluation of the critical temperature for interacting homogeneous dilute Bose gases,” Phys. Rev. A 65, 053613 (2002).

    Article  ADS  Google Scholar 

  45. J. L. Kneur, M. B. Pinto, and R. O. Ramos, “Convergent resummed linear δ expansion in the critical O(N) \((\varphi _{i}^{2})_{{3{\text{d}}}}^{2}\) model,” Phys. Rev. Lett. 89, 210403 (2002).

    Article  ADS  Google Scholar 

  46. E. Braaten and E. Radescu, “Convergence of the linear δ expansion in the critical O(N) field theory,” Phys. Rev. Lett. 89, 271602 (2002).

    Article  ADS  Google Scholar 

  47. E. Braaten and E. Radescu, “Convergence of the linear δ expansion for the shift in T c for Bose-Einstein condensation,” Phys. Rev. A 66, 063601 (2002).

    Article  ADS  Google Scholar 

  48. J. L. Kneur, M. B. Pinto, and R.O. Ramos, “Asymptotically improved convergence of optimized perturbation theory in the Bose–Einstein condensation problem,” Phys. Rev. A 68, 043615 (2003).

    Article  ADS  Google Scholar 

  49. J. L. Kneur, A. Neveu, and M.B. Pinto, “Improved optimization of perturbation theory: Applications to the oscillator energy levels and Bose–Einstein condensate critical temperature,” Phys. Rev. A 69, 053624 (2004).

    Article  ADS  Google Scholar 

  50. J. L. Kneur and M. B. Pinto, “Exact and 1/N optimized perturbative evaluation of µc for homogeneous interacting Bose gases,” Phys. Rev. A 71, 033613 (2005).

    Article  ADS  Google Scholar 

  51. R. L. S. Farias, G. Krein, and R.O. Ramos, “Applicability of the linear δ expansion for the λφ4 field theory at finite temperature in the symmetric and broken phases,” Phys. Rev. D 78, 065046 (2008).

    Article  ADS  Google Scholar 

  52. X. Sun, “Monte Carlo studies of three-dimensional O(1) and O(4) φ4 theory related to Bose–Einstein condensation phase transition temperatures,” Phys. Rev. E 67, 066702 (2003).

    Article  ADS  Google Scholar 

  53. B. Kastening, “Bose–Einstein condensation temperature of a homogeneous weakly interacting Bose gas in variational perturbation theory through six loops,” Phys. Rev. A 68, 061601 (2003).

    Article  ADS  Google Scholar 

  54. B. Kastening, “Bose–Einstein condensation temperature of a homogenous weakly interacting Bose gas in variational perturbation theory through seven loops,” Phys. Rev. A 69, 043613 (2004).

    Article  ADS  Google Scholar 

  55. B. Kastening, “Nonuniversal critical quantities from variational perturbation theory and their application to the Bose–Einstein condensation temperature shift,” Phys. Rev. A 70, 043621 (2004).

    Article  ADS  Google Scholar 

  56. V. I. Yukalov and E. P. Yukalova, “Critical temperature in weakly interacting multicomponent field theory,” Eur. Phys. J. Conf. Ser. 138, 03011 (2017).

    Article  Google Scholar 

  57. J. P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, 1986).

    Google Scholar 

  58. J. L. Birman, R. G. Nazmitdinov, and V. I. Yukalov, “Effects of symmetry breaking in finite quantum systems,” Phys. Rep. 526, 1–91 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. V. I. Yukalov and E. P. Yukalova, “Effects of symmetry breaking in resonance phenomena,” Condens. Matter 3, 5 (2018).

    Article  Google Scholar 

  60. V. I. Yukalov, “Modified semiclassical approximation for trapped Bose gases,” Phys. Rev. A 72, 033618 (2005).

    Article  ADS  Google Scholar 

  61. V. I. Yukalov, “Theory of cold atoms: Bose–Einstein statistics,” Laser Phys. 26, 062001 (2016).

    Article  ADS  Google Scholar 

  62. P. Arnold and B. Tomašik, “Tc for trapped dilute Bose gases: A second-order result,” Phys. Rev. A 64, 053609 (2001).

    Article  ADS  Google Scholar 

  63. B. Kastening, “Fluctuation pressure of a fluid membrane between walls through six loops,” Phys. Rev. E 73, 011101 (2006).

    Article  ADS  Google Scholar 

  64. G. Gompper and D. M. Knoll, “Steric interactions in multimembrane systems: A Monte Carlo study,” Eur. Phys. Lett. 9, 59–64 (1989).

    Article  ADS  Google Scholar 

  65. E. P. Yukalova and V. I. Yukalov, “One-dimensional anharmonic oscillator in self-similar approximation,” Bulg. J. Phys. 19, 12–23 (1992).

    Google Scholar 

  66. I. D. Feranchuk, L. I. Komarov, I. V. Nichipor, and A.P. Ulyanenkov, “Operator method in the problem of anharmonic oscillator,” Ann. Phys. (N.Y., U.S.) 238, 370–440 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. W. Janke and H. Kleinert, “Convergent strong-coupling expansion from divergent weak-coupling perturbation theory,” Phys. Rev. Lett. 75, 2787–2791 (1995).

    Article  ADS  Google Scholar 

  68. I. V. Dobrovolska and R. S. Tutik, “A recursion technique for deriving renormalized perturbation expansions for one-dimensional anharmonic oscillator,” Int. J. Mod. Phys. A 16, 2493–2504 (2001).

    Article  ADS  MATH  Google Scholar 

  69. T. Hatsuda, T. Kunihiro, and T. Tanaka, “Optimized perturbation theory for wave functions of quantum systems,” Phys. Rev. Lett. 78, 3229–3232 (1997).

    Article  ADS  Google Scholar 

  70. E. P. Yukalova and V. I. Yukalov, “Spherical anharmonic oscillator in self-similar approximation,” J. Phys. A 26, 2011–2019 (1993).

    Article  Google Scholar 

  71. E. P. Yukalova and V. I. Yukalov, “Self-similar approximation for an anharmonic oscillator of arbitrary dimensionality,” Phys. Lett. A 175, 27–35 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  72. E. P. Yukalova and V. I. Yukalov, “Self-similar eigenvalues for Schrödinger operators with power-law potentials,” Phys. Scr. 47, 610–617 (1993).

    Article  ADS  MATH  Google Scholar 

  73. T. Imbo, A. Pagnamenta, and U. Sukhatme, “Energy eigenstates of spherically symmetric potentials using shifted 1/N expansion,” Phys. Rev. D 29, 1669–1681 (1994).

    Article  ADS  Google Scholar 

  74. A. J. Coleman, E. P. Yukalova, and V. I. Yukalov, “Pairon distributions and the spectra of reduced Hamiltonians,” Int. J. Quantum Chem. 54, 211–222 (1995).

    Article  Google Scholar 

  75. V. I. Yukalov and E. P. Yukalova, “Evaporation and condensation of clusters,” Phys. A 223, 15–33 (1996).

    Article  Google Scholar 

  76. C. Z. An, I. D. Feranchuk, and L.I. Komarov, “Operator method of calculation of the quasi-steady state eigenvalues,” Phys. Lett. A 125, 123–128 (1987).

    Article  ADS  Google Scholar 

  77. R. Karrlein and H. Kleinert, “Precise variational tunneling rates of anharmonic oscillator for g < 0,” Phys. Lett. A 187, 133–139 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. V. I. Yukalov, E. P. Yukalova, and S. Gluzman, “Self-similar interpolation in quantum mechanics,” Phys. Rev. A 58, 96–115 (1998).

    Article  ADS  Google Scholar 

  79. V. I. Yukalov and E. P. Yukalova, “Asymptotic properties of eigenvalues in variational calculations for double-well oscillators,” J. Phys. A 29, 6429–6442 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. V. I. Yukalov, E. P. Yukalova, and F.A. Oliveira, “Renormalization-group solutions for Yukawa potential,” J. Phys. A 31, 4337–4348 (1998).

    Article  ADS  MATH  Google Scholar 

  81. X. Q. Luo and Y. Y. Li, “Bound states and critical behavior of the Yukawa potential,” Sci. China G 35, 631–642 (2006).

    Google Scholar 

  82. M. Dineykhan and G. V. Efimov, “Zeeman effect in the oscillator representation,” Phys. At. Nucl. 59, 824–831 (1996).

    Google Scholar 

  83. I. D. Feranchuk and L. X. Hai, “Analytic estimation of the energies and widths of the Rydberg states of a Hydrogen atom in an electric field,” Phys. Lett. A 137, 385–388 (1989).

    Article  ADS  Google Scholar 

  84. M. Znojil, “Two-sided estimates of energies and the forgotten exactly solvable potential V(r) = –a 2 r –2+b 2 r –4,” Phys. Lett. A 189, 1–6 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. M. Znojil, “Bound states of the Kratzer plus polynomial potentials and the new form of perturbation theory,” J. Math. Chem. 26, 157–172 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  86. A. Okopinska, “Optimized perturbation method for the propagation in the anahrmonic oscillator potential,” Phys. Lett. A 249, 259–264 (1998).

    Article  ADS  Google Scholar 

  87. F. Weissbach, A. Pelster, and B. Hamprecht, “Higher-order variational perturbation theory for the free energy,” Phys. Rev. E 66, 036129 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  88. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge Univ., Cambridge, 2008.

    Book  Google Scholar 

  89. V. I. Yukalov, “Basics of Bose-Einstein condensation,” Phys. Part. Nucl. 42, 460–513 (2011).

    Article  Google Scholar 

  90. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, “Non-ground-state Bose-Einstein condensates of trapped atoms,” Phys. Rev. A 56, 4845–4854 (1997).

    Article  ADS  Google Scholar 

  91. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, “Excited coherent modes of ultracold trapped atoms,” Laser Phys. 10, 26–30 (2000).

    Google Scholar 

  92. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, “Nonground state condensates of ultracold trapped atoms,” Laser Phys. 11, 455–459 (2001).

    Google Scholar 

  93. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, “Nonlinear coherent modes of trapped Bose-Einstein condensates,” Phys. Rev. A 56, 043602 (2002).

    Article  ADS  Google Scholar 

  94. P. W. Courteille, V. S. Bagnato, and V. I. Yukalov, “Bose-Einstein condensation of trapped atomic gases,” Laser Phys. 11, 659–800 (2001).

    Google Scholar 

  95. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, “Spectrum of coherent modes for trapped Bose gas,” Laser Phys. 12, 1325–1331 (2002).

    Google Scholar 

  96. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, “Resonant Bose condensate: Analog of resonant atom,” Laser Phys. 13, 551–561 (2003).

    Google Scholar 

  97. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, “Coherent resonance in trapped Bose condensates,” Laser Phys. 13, 861–870 (2003).

    Google Scholar 

  98. V. I. Yukalov and E. P. Yukalova, “Degenarate trajectories and Hamiltonian envelopes in the method of self-similar approximations,” Can. J. Phys. 71, 537–546 (1993).

    Article  Google Scholar 

  99. T. Aoyama, T. Matsuo, and Y. Shibusa, “Improved Taylor expansion method in the Ising model,” Prog. Theor. Phys. 115, 473–486 (2006).

    Article  ADS  MATH  Google Scholar 

  100. I. Stancu and P. M. Stevenson, “Second-order corrections to the Gaussian effective potential of λφ4 theory,” Phys. Rev. D 42, 2710–2725 (1990).

    Article  ADS  Google Scholar 

  101. I. Stancu, “Post-Gaussian effective potential in scalar and scalar-fermion theories,” Phys. Rev. D 43, 1283–1299 (1991).

    Article  ADS  Google Scholar 

  102. H. Haugerud and F. Ravndal, “Finite-temperature Gaussian effective potential from a variational principle,” Phys. Rev. D 43, 2736–2738 (1991).

    Article  ADS  Google Scholar 

  103. A. Okopinska, “Optimized expansion for the effective action and multi-particle states in the scalar quantum field theory,” Ann. Phys. (N.Y., U.S.) 228, 19–42 (1993).

    Article  Google Scholar 

  104. H. Kleinert, “Strong-coupling φ4-theory in 4 – ε dimensions and critical exponents,” Phys. Lett. B 434, 74–79 (1998).

    Article  ADS  Google Scholar 

  105. S. Chiku amd T. Hatsuda, “Optimized perturbation theory at finite temperature,” Phys. Rev. D 58, 076001 (1998).

  106. J. Honkonen and M. Nalimov, “Convergent expansion for critical exponents in the O(n)-symmetric φ4 model for large ε,” Phys. Lett. B 459, 582–588 (1999).

    Article  ADS  Google Scholar 

  107. H. Kleinert and B. Van den Bossche, “Three-loop critical exponents, amplitude functions, and amplitude ratios from variational perturbation theory,” Phys. Rev. E 63, 056113 (2001).

    Article  ADS  Google Scholar 

  108. J. Honkonen, M. Komarova, and M. Nalimov, “Large-order asymptotics and convergent perturbation theory for critical indices of the φ4 model in 4 – ε expansion,” Acta Phys. Slovaca 52, 303–310 (2002).

    Google Scholar 

  109. M. Strösser and V. Dohm, “Minimal renormalization without expansion: Four-loop free energy in three dimensions for general n above and below T c,” Phys. Rev. E 67, 056115 (2003).

    Article  ADS  Google Scholar 

  110. D. S. Rosa, R. L. S. Farias, and R.O. Ramos, “Reliability of the optimized perturbation theory in the 0‑dimensional O(N) scalar field model,” Phys. A 464, 11–26 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  111. D. C. Duarte, R. L. S. Farias, and R.O. Ramos, “Optimized perturbation theory for charged scalar field at finite temperature and in an external field,” Phys. Rev. D 84, 083525 (2011).

    Article  ADS  Google Scholar 

  112. G. Krein, R. S. Marques de Caravalho, D. P. Menezes, M. Nielsen, and M. B. Pinto, “Optimized expansion for relativistic nuclear models,” Eur. Phys. J. A 1, 45–53 (1998).

    Article  ADS  Google Scholar 

  113. T. M. R. Birnes, C. J. Hamer, Z. Weihong, and S. Morrison, “Application of Feynman-Kleinert approximants to the massive Schwinger model on a lattice,” Phys. Rev. D 68, 016002 (2003).

    Article  ADS  Google Scholar 

  114. T. S. Evans, H. J. Jones, and D. Winder, “Non-perturbative calculations of a global U(2) theory at finite density and temperature,” Nucl. Phys. B 598, 578–600 (2001).

    Article  ADS  MATH  Google Scholar 

  115. J. L. Kneur and D. Reynaud, “Borel convergence of the variationally improved mass expansion and the O(N) Gross-Neveu model mass gap,” Phys. Rev. D 66, 085020 (2002).

    Article  ADS  Google Scholar 

  116. J. L. Kneur and D. Reynaud, “Renormalon disappearance in the Borel sum of the 1/N expansion of the Gross–Neveu model mass gap,” J. High Energy Phys. 301, 014 (2003).

  117. J. L. Kneur, M. B. Pinto, and R.O. Ramos, “Critical and tricritical points for the massless 2D Gross–Neveu model beyond large N,” Phys. Rev. D 74, 125020 (2006).

    Article  ADS  Google Scholar 

  118. J. L. Kneur, M. B. Pinto, R. O. Ramos, and E. Staudt, “Updating the phase diagram of the Gross–Neveu model in 2+1 dimensions,” Phys. Lett. B 657, 136–142 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. J. L. Kneur, M. B. Pinto, R. O. Ramos, and E. Staudt, “Emergence of tricritical point and liquid-gas phase in the massless 2+1 dimensional Gross–Neveu model,” Phys. Rev. D 76, 045020 (2007).

    Article  ADS  Google Scholar 

  120. U. Kraemmer and A. Rebhan, “Advances in perturbative thermal field theory,” Rep. Prog. Phys. 67, 351–431 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  121. J. H. Field, “Optimised perturbation theory and on-shell renormalisation in QED and QCD,” Ann. Phys. (N.Y., U.S.) 226, 209–247 (1993).

    Article  Google Scholar 

  122. A. C. Mattingly and P. M. Stevenson, “Optimization of R e+e and freezing of the QCD couplant at low energies,” Phys. Rev. D 49, 437–450 (1994).

    Article  ADS  Google Scholar 

  123. C. Arvanitis, F. Geniet, J. L. Kneur, and A. Neveu, “Chiral symmetry breaking in QCD: A variational approach,” Phys. Lett. B 390, 385–391 (1997).

    Article  ADS  Google Scholar 

  124. J. L. Kneur, “Dynamical chiral symmetry breaking from variationally improved perturbative expansion,” Nucl. Phys. B Proc. Suppl. 64, 296–300 (1998).

    Article  ADS  Google Scholar 

  125. J. L. Kneur, “Variational quark mass expansion and the order parameters of chiral symmetry breaking,” Phys. Rev. D 57, 1–21 (1998).

    Article  Google Scholar 

  126. A. N. Sissakian and I. L. Solovtsov, “Variational expansions in quantum chromodynamics,” Phys. Part. Nucl. 30, 1057–1119 (1999).

    Google Scholar 

  127. M. Inoui, A. Niegawa, and H. Ozaki, “Improvement of the hot QCD pressure by the minimal sensitivity criterion,” Prog. Theor. Phys. 115, 411–424 (2006).

    Article  ADS  MATH  Google Scholar 

  128. P. M. Stevenson, “Exploring arbitrarily high orders of optimized perturbation theory in QCD with n f → 16,” Nucl. Phys. B 910, 469–495 (2016).

    Article  ADS  MATH  Google Scholar 

  129. D. F. Litim, “Optimisation of the exact renormalization group,” Phys. Lett. B 486, 92–99 (2000).

    Article  ADS  Google Scholar 

  130. D. F. Litim, “Opimized renormalization group flows,” Phys. Rev. D 64, 105007 (2001).

    Article  ADS  Google Scholar 

  131. D. F. Litim, “Derivative expansion and renormalisation group flows,” J. High Energy Phys. 11, 059 (2001).

  132. D. F. Litim, “Mind the gap,” Int. J. Mod. Phys. A 16, 2081–2087 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. D. F. Litim, “Critical exponents from optimised renormalisation group flows,” Nucl. Phys. B 631, 128–158 (2002).

    Article  ADS  MATH  Google Scholar 

  134. X. G. Wu, Y. Ma, S. Q. Wang, H. B. Fu, H. H. Ma, S. J. Brodsky, and M. Mojaza, “Renormalization group invariance and optimal QCD renormalization scale-setting: A key issues review,” Rep. Prog. Phys. 78, 126201 (2015).

    Article  ADS  Google Scholar 

  135. J. L. Kneur and A. Neveu, “Renormalization group improved optimized perturbation theory: Revisiting the mass gap of the O(2N) Gross-Neveu model,” Phys. Rev. D 81, 125012 (2010).

    Article  ADS  Google Scholar 

  136. J. L. Kneur and A. Neveu, “ΛQCD MS from renormalization group optimized perturbation,” Phys. Rev. D 85, 014005 (2012).

    Article  ADS  Google Scholar 

  137. J. L. Kneur and A. Neveu, “αS from F π and renormalization group optimized perturbation,” Phys. Rev. D 88, 074025 (2013).

    Article  ADS  Google Scholar 

  138. J. L. Kneur and A. Neveu, “The chiral condensate from the renormalization group optimized perturbation,” Phys. Rev. D 92, 074027 (2015).

    Article  ADS  Google Scholar 

  139. J. l. Kneur and M. B. Pinto, “Renormalization group optimized perturbation theory at finite temperatures,” Phys. Rev. D 92, 116008 (2015).

    Article  ADS  Google Scholar 

  140. J. L. Kneur and M. B. Pinto, “Scale invariant resummed perturbation at finite temperatures,” Phys. Rev. Lett. 116, 031601 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  141. D. C. Duarte, R. L. S. Farias, P. H. A. Manso, and R.O. Ramos, “Optimized perturbation theory applied to the study of the thermodynamics and BEC-BCS crossover in the three-color Nambu-Jona-Lasinio model,” Phys. Rev. D 96, 056009 (2017).

    Article  ADS  Google Scholar 

  142. G. N. Ferrari, J. L. Kneur, M. B. Pinto, and R. O. Ramos, “Asymptotically free theory with scale invariant thermodynamics,” Phys. Rev. D 96, 116009 (2017).

    Article  ADS  Google Scholar 

  143. V. I. Yukalov, Renormalization Group in Statistical Physics: Field-Theory and Iteration Formulations (JINR, Dubna, 1988).

    Google Scholar 

  144. V. I. Yukalov, “Algorithm for calculating functions in method of successive approximations,” Int. J. Mod. Phys. B 3, 1691–1702 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  145. V. I. Yukalov, “Strongly interacting particles with strongly singular potentials,” Int. J. Theor. Phys. 28, 1237–1254 (1989).

    Article  MATH  Google Scholar 

  146. V. I. Yukalov “Statistical mechanics of strongly nonideal systems,” Phys. Rev. A 42, 3324–3334 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  147. V. I. Yukalov, “Self-similar approximations for strongly interacting systems,” Phys. A 167, 833–860 (1990).

    Article  MathSciNet  Google Scholar 

  148. V. I. Yukalov, “Group of transformations for continuous iteration,” Proc. Lebedev Phys. Inst. 188, 297–300 (1991).

    Google Scholar 

  149. V. I. Yukalov, “Method of self-similar approximations,” J. Math. Phys. 32, 1235–1239 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  150. V. I. Yukalov, “Stability conditions for method of self-similar approximations,” J. Math. Phys. 33, 3994–4001 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  151. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1983).

    Book  MATH  Google Scholar 

  152. J. K. Hale, L. T. Magalhaes, and W.M. Oliva, Introduction to Infinite Dimensional Dynamical Systems- Geometric Theory (Springer, New York, 1984).

    Book  MATH  Google Scholar 

  153. Y. G. Sinai, Dynamical Systems (Springer, Berlin, 1989).

    Google Scholar 

  154. E. P. Yukalova and V. I. Yukalov, “Renormalization-group induced convergence for divergent sequences,” in Renormalization Group, Ed. by D. V. Shirkov and V. B. Priezzhev (World Sci., Singapore, 1992), pp. 218–229.

    MATH  Google Scholar 

  155. V. I. Yukalov and E. P. Yukalova, “Self-similar renormalization as equation of motion,” Int. J. Mod. Phys. B 7, 2367–2396 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  156. N. N. Bogolubov and D. V. Shirkov, Quantum Fields (Benjamin, London, 1983).

    Google Scholar 

  157. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Acad., New York, 1959).

    MATH  Google Scholar 

  158. S. Smale, “Differentiable dynamical systems,” Bull. Am. Math. Soc. 73, 747–817 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  159. S. H. Saperstone, Semidynamical Systems in Infinite Dimensional Spaces (Springer, New York, 1981).

    Book  MATH  Google Scholar 

  160. V. I. Yukalov and E. P. Yukalova, “Iterative procedure as equation of motion,” in Nonlinear Evolution Equations and Dynamical Systems, Ed. by V. Makhankov, I. Puzynin, and O. Pashaev (World Sci., Singapore, 1993), pp. 18–27.

    Google Scholar 

  161. V. I. Yukalov and E. P. Yukalova, “Perturbation theory as dynamical theory,” in Nonlinear Evolution Equations and Dynamical Systems, Ed. by V. G. Makhankov, A. R. Bishop, and D. D. Holm (World Sci., Singapore, 1995), pp. 356–364.

    MATH  Google Scholar 

  162. V. I. Yukalov and E. P. Yukalova, “Temporal dynamics in perturbation theory,” Phys. A 225, 336–362 (1996).

    Article  Google Scholar 

  163. J. P. Eckmann, “Roads to turbulence in dissipative dynamical systems,” Rev. Mod. Phys. 53, 643–654 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  164. J. P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,” Rev. Mod. Phys. 57, 617–656 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  165. J. Ford, “The Fermi-Pasta-Ulam problem: Paradox turns discovery,” Phys. Rep. 213, 271–310 (1992).

    Article  MathSciNet  Google Scholar 

  166. P. R. Halmos, Lectures on Ergodic Theory (Chelsea, New York, 1956).

    MATH  Google Scholar 

  167. V. I. Yukalov and E. P. Yukalova, “Self-similar approximatios for thermodynamic potentials,” Phys. A 198, 573–546 (1993).

    Article  Google Scholar 

  168. V. I. Yukalov and E. P. Yukalova, “Higher orders of self-similar approximations for thermodynamic potentials,” Phys. A 206, 553–580 (1994).

    Article  Google Scholar 

  169. E. P. Yukalova and V. I. Yukalov, “Calculation of eigenvalues of Schrödinger operators for arbitrary coupling,” in Polarons and Applications, Ed. by V. D. Lakhno (Wiley, Chichester, 1994), pp. 467–478.

    Google Scholar 

  170. V. I. Yukalov and E. P. Yukalova, “Application of method of self-similar approximations for eigenvalue problem,” in Programming and Mathematical Techniques in Physics, Ed. by Y. Y. Lobanov and E. P. Zhidkov (World Sci., Singapore, 1994), pp. 240–242.

    Google Scholar 

  171. V. I. Yukalov and S. Gluzman, “Critical indices as limits of control functions,” Phys. Rev. Lett. 79, 333–336 (1997).

    Article  ADS  Google Scholar 

  172. S. Gluzman and V. I. Yukalov, “Algebraic self-similar renormalization in the theory of critical phenomena,” Phys. Rev. E 55, 3983–3999 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  173. V. I. Yukalov and S. Gluzman, “Self-similar bootstrap of divergent series,” Phys. Rev. E 55, 6552–6565 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  174. P. Meakin, Fractals, Scaling and Growth far From Equilibrium (Cambridge Univ., Cambridge, 1998).

    MATH  Google Scholar 

  175. S. Gluzman and V. I. Yukalov, “Unified approach to crossover phenomena,” Phys. Rev. E, 58, 4197–4209 (1999).

    Article  ADS  Google Scholar 

  176. V. I. Yukalov and S. Gluzman, “Self-similar crossover in statistical physics,” Phys. A 273, 401–415 (1999).

    Article  Google Scholar 

  177. V. I. Yukalov and S. Gluzman, “Self-similar interpolation in high energy physics,” Phys. Rev. D 91, 125023 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  178. V. I. Yukalov, E. P. Yukalova, and S. Gluzman, “Extrapolation and interpolation of asymptotic series by self-similar approximants,” J. Math. Chem. 47, 959–983 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  179. G. A. Baker and J. L. Gammel, “The Padé approximant,” J. Math. Anal. Appl. 2, 21–30 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  180. S. Landau, “Simplification of nested radicals,” SIAM J. Comput. 21, 85–110 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  181. S. Landau, “How to tangle with a nested radical,” Math. Intell. 16, 49–55 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  182. S. Gluzman and V. I. Yukalov, “Self-similar continued root approximants,” Phys. Lett. A 377, 124–128 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  183. V. I. Yukalov and S. Gluzman, “Self-similar exponential approximants,” Phys. Rev. E 58, 1359–1382 (1998).

    Article  ADS  Google Scholar 

  184. L. Euler, “De formulis exponentialibus replicatis,” Acta Acad. Petropolitanae 1, 38–60 (1777).

    Google Scholar 

  185. R. A. Knoebel, “Exponentials reiterated,” Am. Math. Monthly 88, 235–252 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  186. C. M. Bender and J. P. Vinson, “Summation of power series by continued exponentials,” J. Math. Phys. 37, 4103–4120 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  187. V. I. Yukalov, “Self-similar extrapolation of asymptotic series and forecasting for time series,” Mod. Phys. Lett. B 14, 791–800 (2000).

    Article  ADS  MATH  Google Scholar 

  188. S. Gluzman and V. I. Yukalov, “Additive self-similar approximants,” J. Math. Chem. 55, 607–622 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  189. V. I. Yukalov, S. Gluzman, and D. Sornette, “Summation of power series by self-similar factor approximants,” Phys. A 328, 409–438 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  190. S. Gluzman, V. I. Yukalov, and D. Sornette, “Self-similar factor approximants,” Phys. Rev. E 67, 026109 (2003).

    Article  ADS  MATH  Google Scholar 

  191. V. I. Yukalov and S. Gluzman, “Etrapolation of power series by self-similar factor and root approximants,” Int. J. Mod. Phys. B 18, 3027–3046 (2004).

    Article  ADS  MATH  Google Scholar 

  192. V. I. Yukalov and E. P. Yukalova, “Method of self-similar factor approximants,” Phys. Lett. A 368, 341–347 (2007).

    Article  ADS  Google Scholar 

  193. V. I. Yukalov and S. Gluzman, “Optimization of self-similar factor approximants,” Mol. Phys. 107, 2237–2244 (2009).

    Article  ADS  Google Scholar 

  194. S. Gluzman and V. I. Yukalov, “Self-similar extrapolation from weak to strong coupling,” J. Math. Chem. 48, 883–913 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  195. S. Gluzman and V. I. Yukalov, “Self-similarly corrected Padé approximants for the indeterminate problem,” Eur. Phys. J. Plus. 131, 340 (2016).

    Article  Google Scholar 

  196. S. Gluzman and V. I. Yukalov, “Extrapolation of perturbation-theory expansions by self-similar approximants,” Eur. J. Appl. Math. 25, 595–628 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  197. S. Gluzman and V. I. Yukalov, “Self-similar power transforms in extrapolation problems,” J. Math. Chem. 39, 47–56 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  198. P. F. Loos, “High-density correlation energy expansion of the one-dimensional uniform electron gas,” J. Chem. Phys. 138, 064108 (2013).

    Article  ADS  Google Scholar 

  199. S. Gluzman and V. I. Yukalov, “Effective summation and interpolation of series by self-similar root approximants,” Mathematics 3, 510–526 (2015).

    Article  MATH  Google Scholar 

  200. E. Matito, J. Cioslowski, and S. F. Vyboishchikov, “Properties of harmonium atoms from FCI calculations: Calibration and benchmarks for the ground state of the two-electron species,” Phys. Chem. Chem. Phys. 12, 6712–6716 (2010).

    Article  Google Scholar 

  201. J. Schwinger, “Gauge invariance and mass,” Phys. Rev. 128, 2425–2428 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  202. T. Banks, L. Susskind, and J. Kogut, “Strong-coupling calculations of lattice gauge theories: (1 + 1)-dimensional exercises,” Phys. Rev. D 13, 1043–1053 (1976).

    Article  ADS  Google Scholar 

  203. A. Carrol, J. Kogut, D. K. Sinclair, and L. Susskind, “Lattice gauge theory calculations in 1 + 1 dimensions and the approach to the continuum limit,” Phys. Rev. D 13, 2270–2277 (1976).

    Article  ADS  Google Scholar 

  204. J. P. Vary, T. J. Fields, and H. J. Pirner, “Chiral perturbation theory in the Schwinger model,” Phys. Rev. D 53, 7231–7238 (1996).

    Article  ADS  Google Scholar 

  205. C. Adam, “The Schwinger mass in the massive Schwinger model,” Phys. Lett. B 382, 383–388 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  206. P. Striganesh, C. J. Hamer, and R.J. Bursill, “New finite lattice study of the massive Schwinger model,” Phys. Rev. D 62, 034508 (2000).

    Article  ADS  Google Scholar 

  207. S. Coleman, “More about the massive Schwinger model,” Ann. Phys. (N.Y., U.S.) 101, 239–267 (1976).

    Article  ADS  Google Scholar 

  208. C. J. Hamer, “Lattice model calculations for SU(2) Yang-Mills theory in 1+1 dimensions,” Nucl. Phys. B 121, 159–175 (1977).

    Article  ADS  Google Scholar 

  209. C. J. Hamer, Z. Weihong, and J. Oitmaa, “Series expansions for the massive Schwinger model in Hamiltonian lattice theory,” Phys. Rev. D 56, 55–67 (1997).

    Article  ADS  Google Scholar 

  210. T. M. R. Byrnes, P. Striganesh, R. J. Bursill, and C. J. Hamer, “Density matrix renormalization group approach to the massive Schwinger model,” Phys. Rev. D 66, 013002 (2002).

    Article  ADS  Google Scholar 

  211. H. Kröger and N. Scheu, “The massive Schwinger model – a Hamiltonian lattice study in a fast moving frame,” Phys. Lett. B 429, 58–63 (1998).

    Article  ADS  Google Scholar 

  212. C. M. Bender and T. T. Wu, “Anharmonic oscillator,” Phys. Rev. 184, 1231–1260 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  213. E. P. Yukalova, V. I. Yukalov, and S. Gluzman, “Self-similar factor approximants for evolution equations and boundary-value problems,” Ann. Phys. (N.Y., U.S.) 323, 3074–3090 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  214. J. Kevorkian and J. Cole, Perturbation Methods in Applied Methematics (Springer, New York, 1981).

    Book  MATH  Google Scholar 

  215. E. J. Hinch, Perturbation Methods (Cambridge Univ., Cambridge, 1991).

    Book  MATH  Google Scholar 

  216. L. Y. Chen, N. Goldenfeld, and Y. Oono, “Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory,” Phys. Rev. E 54, 376–394 (1996).

    Article  ADS  Google Scholar 

  217. Y. M. Svirezhev, Nonlinear Waves, Dissipative Structures and Catastrophes in Ecology (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  218. T. D. Lee and Y. Pang, “Nontopological solitons,” Phys. Rep. 221, 251–359 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  219. H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations (Springer, Berlin, 1973).

    Book  MATH  Google Scholar 

  220. A. J. Guttmann, “Validity of hyperscaling for the d = 3 Ising model,” Phys. Rev. B 33, 5089–5092 (1986).

    Article  ADS  Google Scholar 

  221. M. N. Barber, R. B. Pearson, D. Toussaint, and J. L. Richardson, “Finite-size scaling in the three-dimensional Ising model,” Phys. Rev B 32, 1720–1730 (1985).

    Article  ADS  Google Scholar 

  222. S. Gluzman and V. I. Yukalov, “Critical indices from self-similar root approximants,” Eur. Phys. J. Plus. 132, 535 (2017).

    Article  MATH  Google Scholar 

  223. V. I. Yukalov and A. S. Shumovsky, Lectures on Phase Transitions (World Sci., Singapore, 1990).

    Google Scholar 

  224. H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4 -Theories (World Sci., Singapore, 2006).

    MATH  Google Scholar 

  225. V. I. Yukalov and E. P. Yukalova, “Calculation of critical exponents by self-similar factor approximants,” Eur. Phys. J. B 55, 93–99 (2007).

    Article  ADS  Google Scholar 

  226. V. I. Yukalov and E. P. Yukalova, “Phase transition in multicomponent field theory at finite temperature,” Proc. Sci. (ISHEPP) 2014, 080 (2014).

  227. D. I. Kazakov and D. V. Shirkov, “Asymptotic series of quantum field theory and their summation,” Fortsch. Phys. 28, 465–499 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  228. A. Pelissetto and E. Vicari, “Critical phenomena and renormalization-group theory,” Phys. Rep. 368, 549–727 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  229. J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson, and T. C. P. Chui, “Specific heat of liquid helium in zero gravity very near the lambda point,” Phys. Rev. E 68, 174518 (2003).

    Article  ADS  Google Scholar 

  230. J. Garsia and J. A. Gonzalo, “Accurate Monte Carlo critical exponents for Ising lattices,” Phyis. A 326, 464–472 (2003).

    Article  ADS  MATH  Google Scholar 

  231. A. A. Pogorelov and I. M. Suslov, “On the critical exponents for the λ transition in liquid helium,” JETP Lett. 86, 39–45 (2007).

    Article  ADS  Google Scholar 

  232. A. A. Pogorelov and I. M. Suslov, “Critical exponents from field-theoretical renormalization group: Mathematical meaning of the standard values,” J. Exp. Theor. Phys. 106, 1118–1129 (2008).

    Article  ADS  Google Scholar 

  233. S. Gluzman and V. I. Yukalov, “Resummation methods for analyzing time series,” Mod. Phys. Lett. B 12, 61–74 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  234. S. Gluzman and V. I. Yukalov, “Renormalization group analysis of October market crashes,” Mod. Phys. Lett. B 12, 75–84 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  235. S. Gluzman and V. I. Yukalov, “Booms and crashes in self-similar markets,” Mod. Phys. Lett. B 12, 575–587 (1998).

    Article  ADS  Google Scholar 

  236. V. I. Yukalov and S. Gluzman, “Weighted fixed points in self-similar analysis of time series,” Int. J. Mod. Phys. B 13, 1463–1476 (1999).

    Article  ADS  Google Scholar 

  237. V. I. Yukalov, “Self-similar approach to market analysis,” Eur. Phys. J. B 20, 609–617 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  238. S. Gluzman, D. Sornette, and V.I. Yukalov, “Reconstructing generalized exponential laws by self-similar exponential approximants,” Int. J. Mod. Phys. C 14, 509–527 (2003).

    Article  ADS  MATH  Google Scholar 

  239. V. I. Yukalov and E. P. Yukalova, “Cooperative electromagnetic effects,” Phys. Part. Nucl. 31, 561–602 (2000).

    Google Scholar 

  240. V. I. Yukalov, “Principle of pattern selection for nonequilibrium phenomena,” Phys. Lett. A 284, 91–98 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  241. V. I. Yukalov, “Probabilistic approach to pattern selection,” Phys. A 291, 255–274 (2001).

    Article  MATH  Google Scholar 

  242. D. Sornette, “Discrete scale invariance and complex dimensions,” Phys. Rep. 297, 239–270 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  243. D. Sornette and A. Andersen, “Large financial crashes,” Phys. A 245, 411–422 (1997).

    Article  MathSciNet  Google Scholar 

  244. A. Johansen and D. Sornette, “Modeling the stock market prior to large crashes,” Eur. Phys. J. B 9, 167–174 (1999).

    Article  ADS  Google Scholar 

  245. S. Drozdz, F. Ruf, J. Speth, and M. Wojcik, “Imprints of log-periodic self-similarity in the stock market,” Eur. Phys. J. B 10, 589–593 (1999).

    Article  ADS  Google Scholar 

  246. A. Johansen and S. Sornette, “Financial anti-bubbles: Log-periodicity in gold and Nikkei collapses,” Int. J. Mod. Phys. C 10, 563–575 (1999).

    Article  ADS  Google Scholar 

  247. A. Johansen and D. Sornette, “Bubbles and anti-bubbles in Latin-American, Asian and western markets: An empirical study,” Int. J. Theor. Appl. Finance 4, 853–920 (2001).

    Article  MATH  Google Scholar 

  248. J. A. Feigenbaum, “More on a statistical analysis of log-periodic precursor to financial crashes,” Quant. Finance 1, 527–532 (2001).

    Article  MATH  Google Scholar 

  249. D. Sornette and A. Johansen, “Significance of log-periodic precursors to financial crashes,” Quant. Finance 1, 452–471 (2001).

    Article  MATH  Google Scholar 

  250. J. Feigenbaum, “Financial physics,” Rep. Prog. Phys. 66, 1611–1649 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  251. A. Johansen and D. Sornette, “Critical ruptures,” Eur. Phys. J. B 18, 163–181 (2000).

    Article  ADS  Google Scholar 

  252. A. Moura and V. I. Yukalov, “Self-similar extrapolation for the law of acoustic emission before failure of heterogeneous materials,” Int. J. Fract. 118, 63–68 (2002).

    Article  Google Scholar 

  253. V. I. Yukalov, A. Moura, and H. Nechad, “Self-similar law of energy release before materials fracture,” J. Mech. Phys. Solids 52, 453–465 (2004).

    Article  ADS  MATH  Google Scholar 

  254. P. Arnold and C. X. Zhai, “The three-loop free energy for high temperature QED and QCD with fermons,” Phys. Rev. D 51, 1906–1918 (1995).

    Article  ADS  Google Scholar 

  255. C. X. Zhai and B. Kastening, “Free energy of hot gauge theories with fermions through g 5,” Phys. Rev. D 52, 7232–7246 (1995).

    Article  ADS  Google Scholar 

  256. E. Braaten and A. Nieto, “Free energy of QCD at high temperature,” Phys. Rev. D 53, 3421–3437 (1996).

    Article  ADS  Google Scholar 

  257. T. van Ritbergen, J. Vermaseren, and S. Larin, “The four-loop β-function in quantum chromodynamics,” Phys. Lett. B 400, 379–384 (1997).

    Article  ADS  Google Scholar 

  258. M. Czakon, “The four-loop QCD beta-function and anomalous dimensions,” Nucl. Phys. B 710, 485–498 (2005).

    Article  ADS  MATH  Google Scholar 

  259. T. Luthe, A. Maier, P. Marquard, and Y. Schröder, “Towards the five-loop beta function for a general gauge group,” J. High Energy Phys. 7, 127 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  260. P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, “Five-loop running of the QCD coupling constant,” Phys. Rev. Lett. 118, 082002 (2017).

    Article  ADS  Google Scholar 

  261. V. I. Yukalov and E. P. Yukalova, “Equation of state in quantum chromodynamics,” in Relativistic Nuclear Physics and Quantum Chromodynamics, Ed. by A. M. Baldin and V. V. Burov (JINR, Dubna, 2000), Vol. 2, pp. 238–245.

    Google Scholar 

  262. V. I. Yukalov and E. P. Yukalova, “Thermodynamics of strong interactions,” Phys. Part. Nucl. 28, 37–65 (1997).

    Article  Google Scholar 

  263. V. I. Yukalov and E. P. Yukalova, “Multichannel approach to clustering matter,” Phys. A 243, 382–414 (1997).

    Article  Google Scholar 

  264. V. I. Yukalov, “Conditions for nuclear-matter lasers,” Laser Phys. 8, 1249–1256 (1998).

    Google Scholar 

  265. S. Borsanyi, G. Endrödi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, “The QCD equation of state with dynamical quarks,” J. High Energy Phys. 11, 077 (2010).

  266. J. O. Andersen, N. Haque, M. G. Mustafa, M. Strickland, and N. Su, “Equation of state for QCD at finite temperature and density: Rresummation versus lattice data,” AIP Conf. Proc. 1701, 020003 (2016).

    Article  Google Scholar 

  267. F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, “The five-loop beta function of Yang–Mills theory with fermions,” J. High Energy Phys. 02, 090 (2017).

  268. I. M. Suslov, “On the Gell–Mann-Low function in QCD,” JETP Lett. 76, 387–391 (2002).

    Article  Google Scholar 

  269. I. M. Suslov, “Divergent perturbation series,” J. Exp. Theor. Phys. 100, 1188–1233 (2005).

    Article  ADS  Google Scholar 

  270. D. I. Kazakov and V. S. Popov, “Asymptotic behavior of the Gell–Mann-Low function in quantum field theory,” JETP Lett. 77, 453–457 (2003).

    Article  ADS  Google Scholar 

  271. A. L. Kataev and S. A. Larin, “Analytical five-loop expressions for the renormalization group QED β‑function in different renormalization schemes,” JETP Lett. 96, 64–67 (2012).

    Article  ADS  Google Scholar 

  272. I. M. Suslov, “Gell–Mann-Low function in quantum electrodynamics,” JETP Lett. 74, 211–215 (2001).

    Article  ADS  Google Scholar 

  273. M. V. Kompaniets and E. Panzer, “Minimally subtracted six-loop renormalization of O(N)-symmetric φ4 theory and critical exponents,” Phys. Rev. D 96, 036016 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  274. O. Schnetz, “Numbers and functions in quantum field theory,” Phys. Rev. D 97, 085018 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  275. D. I. Kazakov, O. V. Tarasov, and D. V. Shirkov, “Analytic continuation of the results of perturbation theory for the model gφ4 to the region g ≥ 1,” Theor. Math. Phys. 38, 9–16 (1979).

    Article  Google Scholar 

  276. K. G. Chetyrkin, S. G. Gorishny, S. A. Larin, and F. V. Tkachev, “Five-loop renormalization group calculations in the gφ4 theory,” Phys. Lett. B 132, 351 (1983).

    Article  ADS  Google Scholar 

  277. A. N. Sissakian, I. L. Solovtsov, and O. P. Solovtsova, “β-function for the φ4 model in variational perturbation theory,” Phys. Lett. B 321, 381–384 (1994).

    Article  ADS  Google Scholar 

  278. I. M. Suslov, “Gell–Mann-Low fucntion in the φ4 theory,” JETP Lett. 71, 217–221 (2000).

    Article  ADS  Google Scholar 

  279. I. M. Suslov, “Summation of divergent series of perturbation theory in the strong coupling limit: Gell–Mann-Low function of φ4 theory,” J. Exp. Theor. Phys. 120, 5–30 (2001).

    Google Scholar 

  280. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, “Self-similar approximations for a trapped Bose-Einstein condensate,” Phys. Rev. A 66, 025602 (2002).

    Article  ADS  Google Scholar 

  281. V. I. Yukalov and E. P. Yukalova, “Optimal trap shape for a Bose gas with attractive interactions,” Phys. Rev. A 72, 063611 (2005).

    Article  ADS  Google Scholar 

  282. V. I. Yukalov and R. Graham, “Bose–Einstein condensed systems in random potentials,” Phys. Rev. A 75, 023619 (2007).

    Article  ADS  Google Scholar 

  283. V. I. Yukalov, E. P. Yukalova, K. V. Krutitsky, and R. Graham, “Bose–Einstein condensed gases in arbitrarily strong random potentials,” Phys. Rev. A 76, 053623 (2007).

    Article  ADS  Google Scholar 

  284. V. I. Yukalov and E. P. Yukalova, “Ground state of a homogeneous Bose gas of hard spheres,” Phys. Rev. A 90, 013627 (2014).

    Article  ADS  Google Scholar 

  285. A. N. Drozdov and S. Hayashi, “Self-similar renormalization approach to barrier crossing processes,” Phys. Rev. E 60, 3804–3813 (1999).

    Article  ADS  Google Scholar 

  286. A. N. Drozdov, “Two novel approaches to the Kramers rate problem in the spatial diffusion regime,” J. Chem. Phys. 111, 6481–6491 (1999).

    Article  ADS  Google Scholar 

  287. S. Chaturverdi and P. D. Drummond, “Stochastic diagrams for critical point spectra,” Eur. Phys. J. B 8, 251–268 (1999).

    Article  ADS  Google Scholar 

  288. S. Gluzman, J. Andersen, and D. Sornette, “Functional renormalization prediction of rupture,” Comput. Seismol. 32, 122–137 (2001).

    Google Scholar 

  289. S. Gluzman and D. Sornette, “Self-consistent theory of rupture by porgressive diffuse damage,” Phys. Rev. E 63, 066129 (2001).

    Article  ADS  Google Scholar 

  290. D. Sornette, A. Helmstetter, J. V. Andersen, S. Gluzman, J. R. Grasso, and V. Pisarenko, “Towards landslide predictions: Two case studies,” Phys. A 338, 605–632 (2004).

    Article  Google Scholar 

  291. J. V. Andersen, S. Gluzman, and D. Sornette, “Fundamental framework for technical analysis of market prices,” Eur. Phys. J. B 14, 579–601 (2000).

    Article  ADS  Google Scholar 

  292. S. Gluzman and D. Sornette, “Classification of possible finite-time singularities by functional renormalization,” Phys. Rev. E 66, 016134 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  293. S. Gluzman and D. Sornette, “Self-similar approximants of the permeability in heterogeneous porous media from moment equation expansions,” Transp. Porous Med. 71, 75–97 (2008).

    Article  MathSciNet  Google Scholar 

  294. S. Gluzman, V. Mityushev, and W. Nawalaniec, Computational Analysis of Structured Media (Acad., London, 2017).

    MATH  Google Scholar 

  295. D. V. Shirkov, A. S. Shumovsky, and V. I. Yukalov, On Interrelation of Different Renormalization Groups (JINR, Dubna, 1986).

    Google Scholar 

  296. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980).

    MATH  Google Scholar 

  297. E. Papp, “Derivation of quantum-mechanical β functions from ground-state energy,” Phys. Lett. A 178, 231–235 (1993).

    Article  ADS  Google Scholar 

  298. E. Papp, “Energy and β-function solutions to relativistic Hamiltonians with Coulombic and linear potentilas,” Phys. Rev. A 48, 4091–4096 (1993).

    Article  ADS  Google Scholar 

  299. J. Hanckowiak, “Theoretical mechanics analysis of coupled equations for n-point functions,” Fortschr. Phys. 42, 281–300 (1994).

    Article  Google Scholar 

  300. A. R. Altenberger and J. S. Dahler, “Application of a new renormalization group to the equation of state of a hard-sphere fluid,” Phys. Rev. E 54, 6242–6252 (1996).

    Article  ADS  Google Scholar 

  301. K. G. Wilson and J. Kogut, “The renormalization group and the ε expansion,” Phys. Rep. 12, 75–199 (1974).

    Article  ADS  Google Scholar 

  302. B. Hu, “Introduction to real-space renormalization-group methods in critical and chaotic phenomena,” Phys. Rep. 91, 233–295 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  303. S. K. Ma, Modern Theory of Critical Phenomena (Routledge, New York, 2009).

    Google Scholar 

  304. V. I. Yukalov, Renormalization Group in Statistical Physics: Analysis of General Principles (JINR, Dubna, 1988).

    Google Scholar 

  305. M. E. Fisher, The Nature of Critical Points (Univ. of Colorado, Boulder, 1965).

    Google Scholar 

  306. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ., Oxford, 1987).

    Google Scholar 

  307. I. Lawrie and S. Sarbach, “Theory of tricritical points,” Phase Trans. Crit. Phenom. 9, 2–31 (1984).

    Google Scholar 

  308. R. Brout, Phase Transitons (Benjamin, New York, 1965).

    Google Scholar 

  309. L. D. Landau and E. M. Lifshitz, Statistical Physics (Elsevier, Oxford, 1980).

    MATH  Google Scholar 

  310. N. N. Bogolubov, Quantum Statistical Mechanics (World Sci., Singapore, 2015).

    MATH  Google Scholar 

  311. V. I. Yukalov and E. P. Yukalova, “Bose-condensed atomic systems with nonlocal interaction potentials,” Laser Phys. 26, 045501 (2016).

    Article  ADS  Google Scholar 

  312. V. I. Yukalov, “Statistical systems with nonintegrable interaction potentials,” Phys. Rev. E 94, 012106 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  313. V. I. Yukalov, “Dipolar and spinor bosonic systems,” Laser Phys. 28, 053001 (2018).

    Article  ADS  Google Scholar 

  314. R. J. Baxter, Exactly Solvable Models in Statistical Mechanics (Acad., London, 1982).

    MATH  Google Scholar 

  315. L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization (World Sci., Singapore, 2000).

    Book  MATH  Google Scholar 

  316. J. Polchinski, “Renormalization and effective Lagrangians,” Nucl. Phys. 231, 269–295 (1984).

    Article  ADS  Google Scholar 

  317. J. de Boer, “The holographic renormalization group,” Fortschr. Phys. 49, 339–358 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  318. I. Heemskerk and J. Polchinski, “Holographic and Wilsonian renormalization group,” J. High Energy Phys. 6, 031 (2011).

  319. V. I. Yukalov, Renormalization Group in Statistical Physics: Momentum and Real Spaces (JINR, Dubna, 1988).

    Google Scholar 

  320. T. S. Cheng, D. D. Vvedensky, and J. F. Nicoll, “Differential renormalization-group generators for static and dynamic critical phenomena,” Phys. Rep. 217, 279–362 (1992).

    Article  MathSciNet  Google Scholar 

  321. E. Efrati, Z. Wang, A. Kolan, and L. P. Kadanoff, “Real-space renormalization in statistical mechanics,” Rev. Mod. Phys. 86, 647–669 (2014).

    Article  ADS  Google Scholar 

  322. R. H. Swendsen, “Optimization of real-space renormalization-group transformations,” Phys. Rev. Lett. 52, 2321–2323 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  323. F. De Pasquale, C. Di Castro, and G. Jona-Lasinio, “Field theory approach to phase transitions,” in Critical Phenomena, Ed. by M. S. Green (Acad., New York, 1971), pp. 123–156.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful for many useful discussions and collaboration to S. Gluzman and E.P. Yukalova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yukalov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yukalov, V.I. Interplay between Approximation Theory and Renormalization Group. Phys. Part. Nuclei 50, 141–209 (2019). https://doi.org/10.1134/S1063779619020047

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619020047

Keywords:

Navigation