Skip to main content
Log in

Multi-Loop Techniques for Massless Feynman Diagram Calculations

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review several multi-loop techniques for analytical massless Feynman diagram calculations in relativistic quantum field theories: integration by parts, the method of uniqueness, functional equations and the Gegenbauer polynomial technique. A brief, historically oriented, overview of some of the results obtained over the decades for the massless 2-loop propagator-type diagram is given. Concrete examples of up to 5-loop diagram calculations are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. According to [23], the large-N expansion also first appeared in the context of statistical mechanics through the work of Stanley on spin systems [30].

  2. Notice that the lower number of loops presently achieved for the Gross–Neveu model with respect to other models is related to the loss of multiplicative renormalizability of 4-fermion operators in dimensional regularization and the generation of evanescent operators; so calculations for this model are less straightforward than in other models.

  3. The integrals with many legs are essentially more complicated (see the recent paper [138] and references therein) and their consideration is beyond the scope of this review.

  4. In some cases, for n-point functions, a tensorial reduction, the so-called Passarino–Veltman reduction scheme [143], see also [144] for a review, allows to express a tensor integral in terms of scalar ones with tensor coefficients depending on the external kinematic variables and eventually the metric tensor. We assume that such a reduction has been performed and essentially focus on the computation of the scalar integrals. Notice that, at one-loop, the Passarino–Veltman reduction has been automated in packages such as FeynCalc [145, 146], LoopTools [147] and (combined with FeynArts [148]) FormCalc [149].

  5. See, e.g., Refs. [151]– [155] for more examples of the use of the Mellin–Barnes transformation in Feynman diagram calculations.

  6. This is also known as gluing, see Ref. [45] and [156] for a recent review.

  7. In the case where \(\alpha = {D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}\) is encountered, it is also possible to use the following trick: introduce a regulator \(\delta \to 0\) shifting the index α, e.g., \(\alpha \to \alpha + \delta .\) The limit \(\delta \to 0\) is taken at the end of the calculation. See Ref. [126] for an example.

  8. This is again the gluing (or glue and cut) method, see Ref. [45] and [156] for a recent review.

  9.  There are two possible sets of generators for the symmetric group \({{S}_{n}}\,:\)n – 1 generators formed by the transpositions (12), (23), …(nn – 1), —2 generators formed by a transposition 12 and an n-cycle: (12 … n).

  10.  Notice that in Eq. (3.43), we have used a scheme in which \({{\gamma }_{{\text{E}}}}\) and \({{\zeta }_{2}}\) were subtracted from the remaining ε-expansion. There are several other such schemes, e.g., the G-scheme [46], see Eq. (3.65), where a factor of \({{G}^{l}}(\varepsilon )\) is extracted from every l‑loop diagram and may be absorbed in a redefinition of the renormalization scale μ. As they resum part of the ε-expansion, these schemes appear to converge faster than the \(\overline {{\text{MS}}} \) scheme.

  11.  Indices of this kind appear when considering multi-loop Feynman diagrams with integer indices. Upon integrating some of the subdiagrams using, e.g., IBP or another technique, the diagram transforms into a diagram with less loops but having lines where the integer indices are shifted by ε quantities.

  12.  Some generalization of the theorem appeared in Refs. [70, 71].

  13.  We were informed by David Broadhurst that this principle appears to be first due to John Gracey in an example of supersymmetric nonlinear sigma model preceding Ref. [62].

  14.  We have: \({{\psi }^{{(n)}}}({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}) = {{( - 1)}^{{n + 1}}}n!({{2}^{{n + 1}}} - 1){{\zeta }_{{n + 1}}}\) for \(n \in \mathbb{N}{\text{*}}.\)

  15.  According to [165], Regge proposed that any Feynman diagram can be understood in terms of some hypergeometric functions, see [165] and references therein for more on the hypergeometric function approach to Feynman diagrams.

  16.  Unpublished result from M. Kompaniets reproduced with his kind permission.

  17.  We were informed by M. Kompaniets that, for even space dimensions, it is also possible to compute these integrals with the help of HyperInt [102] using the technique developed in [120].

  18.  The original references [44, 45] were actually focusing on IBP relations for 3-loop massless p-type diagrams.

  19.  In coordinate space, it corresponds to the insertion of a point into this line (see the table of such transformations in Ref. [37] and also Ref. [139] for a review).

  20.  The journal version of [42] contains mostly the formulas without graphics. The corresponding graphical representations can be found in the preprint version of [42] (see, for example, the corresponding KEK scanned document).

  21.  The duality transformation defined here follows from Kotikov [42, 61] and Kazakov and Kotikov ([40]) and differs from the duality transformation considered by Kazakov [139] which corresponds to duality plus Fourier transform, see Eq. (4.117).

  22.  We would like to note that the inhomogeneous terms in Eq. (11) of [57] and in Eq. (2.14) of [139] have wrong signs. Moreover, the r.h.s. of Eqs. (14) and (15) of [57] and also the r.h.s of Eqs. (2.17) and (2.18) of [139] should have the additional sign “–”.

  23.  Similar results have been recently published in Ref. [173].

REFERENCES

  1. S.-I. Tomonaga, “On a relativistically invariant formulation of the quantum theory of wave fields,” Prog. Theor. Phys. 1, 27 (1946); Z. Koba, T. Tati, and S.‑I. Tomonaga, “On a relativistically invariant formulation of the quantum theory of wave fields. II: Case of interacting electromagnetic and electron fields,” Prog. Theor. Phys. 2, 101 (1947), S. I. Tomonaga and J. R. Oppenheimer, “On infinite field reactions in quantum field theory,” Phys. Rev. 74, 224 (1948).

    Article  ADS  Google Scholar 

  2. J. S. Schwinger, “Quantum electrodynamics. I: A covariant formulation,” Phys. Rev. 74, 1439 (1948); J. S. Schwinger, “Quantum electrodynamics. II: Vacuum polarization and selfenergy,” Phys. Rev. 75, 651 (1948); J. S. Schwinger, “Quantum electrodynamics. III: The electromagnetic properties of the electron: Radiative corrections to scattering,” Phys. Rev. 76, 790 (1949).

    Article  ADS  Google Scholar 

  3. R. P. Feynman, “Relativistic cutoff for quantum electrodynamics,” Phys. Rev. 74, 1430 (1948); R. P. Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev. 76, 769 (1949); R. P. Feynman, “Mathematical formulation of the quantum theory of electromagnetic interaction,” Phys. Rev. 80, 440 (1950).

    Article  ADS  Google Scholar 

  4. F. J. Dyson, “The radiation theories of Tomonaga, Schwinger, and Feynman,” Phys. Rev. 75, 486 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. Gell-Mann and F. E. Low, “Quantum electrodynamics at small distances,” Phys. Rev. 95, 1300 (1954).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. E. C. G. Stueckelberg and A. Petermann, “La normalisation des constantes dans la théorie des quanta. Normalization of constants in the quanta theory,” Helv. Phys. Acta 26, 499 (1953).

    MathSciNet  MATH  Google Scholar 

  7. N. N. Bogolyubov and D. V. Shirkov, “Charge renormalization group in quantum field theory,” Nuovo Cim. 3, 845 (1956).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. N. N. Bogoliubov and O. S. Parasiuk, “On the multiplication of the causal function in the quantum theory of fields,” Acta Math. 97, 227 (1957).

    Article  MathSciNet  Google Scholar 

  9. K. Hepp, “Proof of the Bogolyubov–Parasiuk theorem on renormalization,” Commun. Math. Phys. 2, 301 (1966).

    Article  ADS  MATH  Google Scholar 

  10. W. Zimmermann, “Convergence of Bogoliubov’s method of renormalization in momentum space,” Commun. Math. Phys. 15, 208 (1969), W. Zimmermann, in Lectures on Elementary Particle and Quantum Field Theory (MIT Press, Cambridge, 1970).

  11. N. N. Bogolyubov and D. V. Shirkov, “Introduction to the theory of quantized fields,” Intersci. Monogr. Phys. Astron. 3, 1 (1959).

    MATH  Google Scholar 

  12. C. N. Yang and R. L. Mills, “Conservation of isotopic spin and isotopic gauge invariance,” Phys. Rev. 96, 191 (1954).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. Glashow, “Partial symmetries of weak interactions,” Nucl. Phys. 22, 579 (1961); A. Salam and J. C. Ward, “Electromagnetic and weak interactions,” Phys. Lett. 13, 168 (1964); S. Weinberg, “A model of leptons,” Phys. Rev. Lett. 19, 1264 (1967).

    Article  Google Scholar 

  14. G. ’t Hooft, “Renormalizable Lagrangians for massive Yang–Mills Fields,” Nucl. Phys. B 35, 167 (1971).

    Article  ADS  Google Scholar 

  15. G. ’t Hooft and M. J. G. Veltman, “Regularization and renormalization of gauge fields,” Nucl. Phys. B 44, 189 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  16. C. G. Bollini and J. J. Giambiagi, “Dimensional renormalization: The number of dimensions as a regularizing parameter,” Nuovo Cimento B 12, 20 (1972).

    Google Scholar 

  17. G. M. Cicuta and E. Montaldi, “Analytic renormalization via continuous space dimension,” Lett. Nuovo Cimento 4, 329 (1972).

    Article  Google Scholar 

  18. J. F. Ashmore, “A method of gauge invariant regularization,” Lett. Nuovo Cimento 4, 289 (1972).

    Article  Google Scholar 

  19. G. ’t Hooft, “Dimensional regularization and the renormalization group,” Nucl. Phys. B 61, 455 (1973).

    Article  ADS  Google Scholar 

  20. H. D. Politzer, “Reliable perturbative results for strong interactions?,” Phys. Rev. Lett. 30, 1346 (1973).

    Article  ADS  Google Scholar 

  21. D. J. Gross and F. Wilczek, “Ultraviolet behavior of nonabelian gauge theories,” Phys. Rev. Lett. 30, 1343 (1973).

    Article  ADS  Google Scholar 

  22. G. ’t Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B 72, 461 (1974).

    Article  ADS  Google Scholar 

  23. E. Brézin and S. R. Wadia, The Large N Expansion in Quantum Field Theory and Statistical Physics: From Spin Systems to Two-Dimensional Gravity (World Sci., Singapore, 1993).

    Book  Google Scholar 

  24. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999); J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998); E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998).

    Article  MathSciNet  Google Scholar 

  25. K. G. Wilson, “Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture,” Phys. Rev. B 4, 3174 (1971).

    Article  ADS  MATH  Google Scholar 

  26. K. G. Wilson, “Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior,” Phys. Rev. B 4, 3184 (1971).

    Article  ADS  MATH  Google Scholar 

  27. K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Phys. Rev. Lett. 28, 240 (1972).

    Article  ADS  Google Scholar 

  28. E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, “Wilson’s theory of critical phenomena and Callan-Symanzik equations in 4-epsilon dimensions,” Phys. Rev. D 8, 434 (1973); E. Brézin, J. C. Le Guillou, and J. Zinn-Justin,“ Addendum to Wilson’s theory of critical phenomena and Callan-Symanzik equations in 4‑epsilon dimensions,” Phys. Rev. D 9, 1121 (1974).

    Article  ADS  Google Scholar 

  29. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 2002).

    Book  MATH  Google Scholar 

  30. H. E. Stanley, “Spherical model as the limit of infinite spin dimensionality,” Phys. Rev. 176, 718 (1968).

    Article  ADS  Google Scholar 

  31. A. A. Vladimirov, “Method for computing renormalization group functions in dimensional renormalization scheme,” Theor. Math. Phys. 43, 417 (1980).

    Article  Google Scholar 

  32. K. G. Chetyrkin and F. V. Tkachov, “Infrared R operation and ultraviolet counterterms in the MS scheme,” Phys. Lett. B 114, 340 (1982).

    Article  ADS  Google Scholar 

  33. K. G. Chetyrkin and V. A. Smirnov, “R* operation corrected,” Phys. Lett. B 144, 419 (1984).

    Article  ADS  Google Scholar 

  34. V. A. Smirnov and K. G. Chetyrkin, “R* operation in the minimal subtraction scheme,” Theor. Math. Phys. 63, 462 (1985).

    Article  MathSciNet  Google Scholar 

  35. K. G. Chetyrkin, “Combinatorics of R-, R –1-, and R*-operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses,” arXiv:1701.08627 [hep-th].

  36. M. D’Eramo, G. Parisi, and L. Peliti, “Theoretical predictions for critical exponents at the lambda point of Bose liquids,” Lett. Nuovo Cimento 2, 878 (1971).

    Article  Google Scholar 

  37. A. N. Vasiliev, Y. M. Pismak, and J. R. Honkonen, “1/\(N\) expansion: Calculation of the exponents \(\eta \) and Nu in the order 1/\({{N}^{2}}\) for arbitrary number of dimensions,” Theor. Math. Phys. 47, 465 (1981).

    Article  Google Scholar 

  38. N. I. Usyukina, “Calculation of many loop diagrams of perturbation theory,” Theor. Math. Phys. 54, 78 (1983).

    Article  Google Scholar 

  39. D. I. Kazakov, “Calculation of Feynman integrals by the method of ’uniqueness’,” Theor. Math. Phys. 58, 223 (1984).

    Article  Google Scholar 

  40. D. I. Kazakov and A. V. Kotikov, “The method of uniqueness: Multiloop calculations in QCD,” Theor. Math. Phys. 73, 1264 (1988).

    Article  Google Scholar 

  41. D. I. Kazakov and A. V. Kotikov, “Total \({{\alpha }_{s}}\) correction to deep inelastic scattering cross-section ratio, R = \({{{{\sigma }_{1}}} \mathord{\left/ {\vphantom {{{{\sigma }_{1}}} {{{\sigma }_{t}}}}} \right. \kern-0em} {{{\sigma }_{t}}}}\) in QCD. Calculation of longitudinal structure function,” Nucl. Phys. B 307, 721 (1988); D. I. Kazakov and A. V. Kotikov, Nucl. Phys. B 345 (E), 299 (1990).

  42. A. V. Kotikov, “The calculation of moments of structure function of deep inelastic scattering in QCD,” Theor. Math. Phys. 78, 134 (1989).

    Article  MathSciNet  Google Scholar 

  43. A. N. Vasiliev, Y. M. Pismak, and J. R. Honkonen, “1/n expansion: Calculation of the exponent eta in the order 1/n 3 by the conformal bootstrap method,” Theor. Math. Phys. 50, 127 (1982).

    Article  Google Scholar 

  44. F. V. Tkachov, “A theorem on analytical calculability of four loop renormalization group functions,” Phys. Lett. B 100, 65 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  45. K. G. Chetyrkin and F. V. Tkachov, “Integration by parts: The algorithm to calculate beta functions in 4 loops,” Nucl. Phys. B 192, 159 (1981).

    Article  ADS  Google Scholar 

  46. K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachov, “New approach to evaluation of multiloop Feynman integrals: The Gegenbauer polynomial x space technique,” Nucl. Phys. B 174, 345 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  47. D. J. Broadhurst, “Exploiting the 1.440 fold symmetry of the master two loop diagram,” Z. Phys. C: Part. Fields 32, 249 (1986).

    Article  Google Scholar 

  48. D. T. Barfoot and D. J. Broadhurst, “\(Z\)(2) X S(6) symmetry of the two loop diagram,” Z. Phys. C: Part. Fields 41, 81 (1988).

    Article  Google Scholar 

  49. J. C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group, and the Operator Product Expansion (Cambridge Univ. Press, Cambridge, 1986).

    MATH  Google Scholar 

  50. H. Kleinert and V. Schulte-Frohlinde, Critical Properties of \({{\Phi }^{4}}\) -Theories (World Sci., Singapore, 2001).

    Book  MATH  Google Scholar 

  51. A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (Chapman Hall/CRC, Boca Raton, 2004).

    Book  MATH  Google Scholar 

  52. A. G. Grozin, Lectures on QED and QCD: Practical Calculation and Renormalization of One- and Multi-Loop Feynman Diagrams (World Sci., Hackensack U.S.A., 2007); arXiv:hep-ph/0508242.

  53. V. A. Smirnov, Analytic Tools for Feynman Integrals, Springer Tracts in Modern Physics (Springer, Berlin, Heidelberg, 2013).

    Google Scholar 

  54. O. V. Tarasov, A. A. Vladimirov, and A. Y. Zharkov, “The Gell-Mann–Low function of QCD in the three loop approximation,” Phys. Lett. B 93, 429 (1980).

    Article  ADS  Google Scholar 

  55. S. G. Gorishnii, S. A. Larin, F. V. Tkachov, and K. G. Chetyrkin, “Five loop renormalization group calculations in the \(g{{\varphi }^{4}}\) in four-dimensions theory,” Phys. Lett. B 132, 351 (1983).

    Article  ADS  Google Scholar 

  56. D. I. Kazakov, “The method of uniqueness, a new powerful technique for multiloop calculations,” Phys. Lett. B 133, 406 (1983).

    Article  ADS  Google Scholar 

  57. D. I. Kazakov, “Multiloop calculations: Method of uniqueness and functional equations,” Theor. Math. Phys. 62, 84 (1985).

    Article  Google Scholar 

  58. O. V. Tarasov, “Connection between Feynman integrals having different values of the space-time dimension,” Phys. Rev. D 54, 6479 (1996); hep-th/9606018; O. V. Tarasov, “Generalized recurrence relations for two loop propagator integrals with arbitrary masses,” Nucl. Phys. B 502, 455 (1997), hep-ph/9703319.

  59. R. N. Lee, “Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D,” Nucl. Phys. B 830, 474; (2010), arXiv:0911.0252 [hep-ph].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. J. A. Gracey, “On the evaluation of massless Feynman diagrams by the method of uniqueness,” Phys. Lett. B 277, 469 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  61. A. V. Kotikov, “The Gegenbauer polynomial technique: The evaluation of a class of Feynman diagrams,” Phys. Lett. B 375, 240 (1996), arXiv:hep-ph/9512270.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. D. J. Broadhurst, J. A. Gracey, and D. Kreimer, “Beyond the triangle and uniqueness relations: Nonzeta counterterms at large N from positive knots,” Z. Phys. C: Part. Fields 75, 559 (1997), arXiv:hep-th/9607174.

    Article  Google Scholar 

  63. E. E. Boos and A. I. Davydychev, “A method of evaluating massive Feynman integrals,” Theor. Math. Phys. 89, 1052 (1991).

    Article  MATH  Google Scholar 

  64. A. V. Kotikov, “Differential equations method: New technique for massive Feynman diagrams calculation,” Phys. Lett. B 254, 158 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  65. A. V. Kotikov, “Differential equations method: The calculation of vertex type Feynman diagrams,” Phys. Lett. B 259, 314 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  66. A. V. Kotikov, “Differential equation method: The calculation of N point Feynman diagrams,” Phys. Lett. B 267, 123 (1991); A. V. Kotikov, Phys. Lett. B 295 (E), 409 (1992); A. V. Kotikov, “New method of massive N point Feynman diagrams calculation,” Mod. Phys. Lett. A 6, 3133 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  67. D. J. Broadhurst and A. V. Kotikov, “Compact analytical form for nonzeta terms in critical exponents at order 1/N3,” Phys. Lett. B 441, 345 (1998), arXiv:hep-th/9612013.

    Article  ADS  Google Scholar 

  68. D. J. Broadhurst, “Where do the tedious products of zeta’s come from?,” Nucl. Phys. B, Proc. Suppl. 116, 432 (2003), arXiv:hep-ph/0211194.

    Article  ADS  MATH  Google Scholar 

  69. I. Bierenbaum and S. Weinzierl, “The massless two loop two point function,” Eur. Phys. J. C 32, 67 (2003), arXiv:hep-ph/0308311.

    Article  ADS  MATH  Google Scholar 

  70. F. Brown, “The massless higher-loop two-point function,” Commun. Math. Phys. 287, 925 (2009), arXiv:0804.1660 [math.AG].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. F. C. S. Brown, “On the periods of some Feynman integrals,” arXiv:0910.0114 [math.AG].

  72. H. Kleinert, J. Neu, V. Schulte-Frohlinde, K. G. Chetyrkin, and S. A. Larin, “Five loop renormalization group functions of O(n) symmetric phi4 theory and epsilon expansions of critical exponents up to epsilon5,” Phys. Lett. B 272, 39 (1991), Phys. Lett. B 319 (E), 545 (1993).

  73. J. A. Gracey, “Electron mass anomalous dimension at O(1/(Nf(2)) in quantum electrodynamics,” Phys. Lett. B 317, 415 (1993), arXiv:hep-th/9312055.

    Article  ADS  MathSciNet  Google Scholar 

  74. A. N. Vasil’ev, S. E. Derkachov, N. A. Kivel’, and A. S. Stepanenko, “The 1/n expansion in the Gross–Neveu model: Conformal bootstrap calculation of the index η in order 1/n 3,” Theor. Math. Phys. 94, 127 (1993).

    Article  Google Scholar 

  75. J. A. Gracey, “The conformal bootstrap equations for the four Fermi interaction in arbitrary dimensions,” Z. Phys. C: Part. Fields 59, 243 (1993).

    Google Scholar 

  76. N. A. Kivel, A. S. Stepanenko, and A. N. Vasiliev, “On calculation of (2+epsilon) RG functions in the Gross–Neveu model from large N expansions of critical exponents,” Nucl. Phys. B 424, 619 (1994), arXiv:hep-th/9308073.

    Article  ADS  Google Scholar 

  77. J. A. Gracey, “Computation of critical exponent eta at O(1/N(f)2) in quantum electrodynamics in arbitrary dimensions,” Nucl. Phys. B 414, 614 (1994), arXiv:hep-th/9312055.

    Article  ADS  Google Scholar 

  78. D. Kreimer, “On the Hopf algebra structure of perturbative quantum field theories,” Theor. Math. Phys. 2, 303 (1998), arXiv:q-alg/9707029.

    Article  MathSciNet  MATH  Google Scholar 

  79. A. Connes and D. Kreimer, “Hopf algebras, renormalization and noncommutative geometry,” Commun. Math. Phys. 199, 203 (1998), arXiv:hep-th/9808042.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. P. Cartier, “A mad day’s work: From Grothendieck to Connes and Kontsevich the evolution of concepts of space and symmetry,” Bull. Am. Math. Soc. 38, 389 (2001).

    Article  MATH  Google Scholar 

  81. M. Kontsevich, “Operads and motives in deformation quantization,” Lett. Math. Phys. 48, 35 (1999), arXiv:math/9904055 [math.QA].

  82. A. Connes and M. Marcolli, “Renormalization and motivic Galois theory,” arXiv:math/0409306 [math.NT].

  83. D. J. Broadhurst, “The master two loop diagram with masses,” Z. Phys. C: Part. Fields 47, 115 (1990).

    Article  Google Scholar 

  84. M. J. G. Veltman, SCHOONSHIP, CERN Report, 1963.

  85. A. C. Hearn, REDUCE User’s Manual, Report No. ITP-292, Stanford University, 1967, rev. 1968.

  86. J. A. M. Vermaseren, New features of FORM; arXiv:math-ph/0010025.

  87. C. W. Bauer, A. Frink, and R. Kreckel, “Introduction to the GiNaC framework for symbolic computation within the C++ programming language,” J. Symb. Comput. 33, 1 (2000); arXiv:cs/0004015 [cs-sc].

  88. S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, Advanced Book Program (Addison-Wesley Publ. Co., 1991).

    Google Scholar 

  89. S. Weinzierl, “Computer algebra in particle physics,” arXiv:hep-ph/0209234.

  90. P. Nogueira, “Automatic Feynman graph generation,” J. Comput. Phys. 105, 279 (1993), [inspirehep/315611].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. T. Seidensticker, “Automatic application of successive asymptotic expansions of Feynman diagrams,” arXiv:hep-ph/9905298.

  92. S. Laporta, “High precision calculation of multiloop Feynman integrals by difference equations,” Int. J. Mod. Phys. A 15, 5087 (2000), arXiv:hep-ph/0102033.

    ADS  MathSciNet  MATH  Google Scholar 

  93. P. A. Baikov, “Explicit solutions of the three loop vacuum integral recurrence relations,” Phys. Lett. B 385, 404 (1996), arXiv:hep-ph/9603267.

    Article  ADS  Google Scholar 

  94. C. Studerus, “Reduze-Feynman integral reduction in C++,” Comput. Phys. Commun. 181, 1293 (2010), arXiv:0912.2546 [physics.comp-ph].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. A. von Manteuffel and C. Studerus, “Reduze 2—Distributed Feynman Integral Reduction,” arXiv:1201.4330 [hep-ph].

  96. A. V. Smirnov, “Algorithm FIRE—Feynman Integral REeduction,” JHEP 0810, 107 (2008), arXiv:0807.3243 [hep-ph].

  97. P. Maierhoefer, J. Usovitsch, and P. Uwer, “Kira—A Feynman integral reduction program,” arXiv:1705.05610 [hep-ph].

  98. R. N. Lee, “LiteRed 1.4: A powerful tool for reduction of multiloop integrals,” J. Phys.: Conf. Ser. 523, 012059 (2014), arXiv:1310.1145 [hep-ph].

    Google Scholar 

  99. T. Binoth and G. Heinrich, “An automatized algorithm to compute infrared divergent multiloop integrals,” Nucl. Phys. B 585, 741 (2000), hep-ph/0004013.

    Article  ADS  MATH  Google Scholar 

  100. C. Bogner and S. Weinzierl, “Resolution of singularities for multi-loop integrals,” Comput. Phys. Commun. 178, 596 (2008), arXiv:0709.4092 [hep-ph].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. C. Bogner, “Mathematical aspects of Feynman integrals,” PhD (Mainz, 2009).

  102. E. Panzer, “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals,” Comput. Phys. Commun. 188, 148 (2015), arXiv:1403.3385 [hep-th].

    Article  ADS  MATH  Google Scholar 

  103. E. Panzer, “Feynman integrals and hyperlogarithms,” PhD (Humboldt-Universität zu Berlin); arXiv:1506.07243 [math-ph].

  104. A. Georgoudis, V. Goncalves, E. Panzer, and R. Pereira, “Five-loop massless propagator integrals,” arXiv:1802.00803 [hep-th].

  105. O. Schnetz, “Graphical functions and single-valued multiple polylogarithms,” Commun. Num. Theor. Phys. 08, 589 (2014), arXiv:1302.6445 [math.NT].

  106. M. Golz, E. Panzer, and O. Schnetz, “Graphical functions in parametric space,” Lett. Math. Phys. 107, 1177 (2017), arXiv:1509.07296 [math-ph].

  107. D. V. Batkovich and M. Kompaniets, “Toolbox for multiloop Feynman diagrams calculations using \({{R}^{ * }}\) operation,” J. Phys.: Conf. Ser. 608 (1), 012068 (2015), arXiv:1411.2618 [hep-th].

    Google Scholar 

  108. F. Herzog and B. Ruijl, “The R*-operation for Feynman graphs with generic numerators,” JHEP 1705, 037 (2017), arXiv:1703.03776 [hep-th].

  109. J. A. Gracey, T. Luthe, and Y. Schroder, “Four loop renormalization of the Gross–Neveu model,” Phys. Rev. D 94, 125028 (2016), arXiv:1609.05071 [hep-th].

  110. J. A. Gracey, “Large N critical exponents for the chiral Heisenberg Gross–Neveu universality class,” arXiv:1801.01320 [hep-th].

  111. L. N. Mihaila, N. Zerf, B. Ihrig, I. F. Herbut, and M. M. Scherer, “Gross–Neveu–Yukawa model at three loops and Ising critical behavior of Dirac systems,” Phys. Rev. B 96, 165133 (2017), arXiv:1703.08801 [cond-mat.str-el].

  112. N. Zerf, L. N. Mihaila, P. Marquard, I. F. Herbut, and M. M. Scherer, “Four-loop critical exponents for the Gross–Neveu–Yukawa models,” Phys. Rev. D 96, 096010 (2017), arXiv:1709.05057 [hep-th].

  113. P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, “Five-loop running of the QCD coupling constant,” Phys. Rev. Lett. 118, 082002 (2017), arXiv:1606.08659 [hep-ph].

  114. T. Luthe, A. Maier, P. Marquard, and Y. Schröder, “Five-loop quark mass and field anomalous dimensions for a general gauge group,” JHEP 1701, 081 (2017), arXiv:1612.05512 [hep-ph].

  115. T. Luthe, A. Maier, P. Marquard, and Y. Schröder, “Complete renormalization of QCD at five loops,” JHEP 1703, 020 (2017), arXiv:1701.07068 [hep-ph].

  116. F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, “The five-loop beta function of Yang–Mills theory with fermions,” JHEP 1702, 090 (2017), arXiv:1701.01404 [hep-ph].

  117. K. G. Chetyrkin, G. Falcioni, F. Herzog, and J. A. M. Vermaseren, “Five-loop renormalisation of QCD in covariant gauges,” JHEP 1710, 179 (2017); K. G. Chetyrkin, G. Falcioni, F. Herzog, and J. A. M. Vermaseren, “Addendum,” JHEP 1712, 006 (2017), arXiv:1709.08541 [hep-ph].

  118. T. Luthe, A. Maier, P. Marquard, and Y. Schroder, “The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge,” JHEP 1710, 166 (2017), arXiv:1709.07718 [hep-ph].

  119. D. V. Batkovich, K. G. Chetyrkin, and M. V. Kompaniets, “Six loop analytical calculation of the field anomalous dimension and the critical exponent \(\eta \) in \(O(n)\)-symmetricφ4 model,” Nucl. Phys. B 906, 147 (2016), arXiv:1601.01960 [hep-th].

  120. M. Kompaniets and E. Panzer, “Renormalization group functions of ϕ4 theory in the MS-scheme to six loops,” PoS LL2016, 038 (2016), arXiv:1606.09210 [hep-th].

  121. M. V. Kompaniets and E. Panzer, “Minimally subtracted six loop renormalization of \(O(n)\)-symmetric ϕ4 theory and critical exponents,” Phys. Rev. D 96, 036016 (2017), arXiv:1705.06483 [hep-th].

  122. O. Schnetz, “Numbers and functions in quantum field theory,” Phys. Rev. D 97, 085018 (2018), arXiv:1606.08598 [hep-th].

  123. C. Marboe and V. Velizhanin, “Twist-2 at seven loops in planar \(\mathcal{N}\) = 4 SYM theory: Full result and analytic properties,” JHEP 1611, 013 (2016); arXiv:1607.06047 [hep-th].

  124. C. Bogner, S. Borowka, T. Hahn, G. Heinrich, S. P. Jones, M. Kerner, A. von Manteuffel, M. Michel, E. Panzer, and V. Papara, “Loopedia, a database for loop integrals,” Comput. Phys. Commun. 225, 1 (2018), arXiv:1709.01266 [hep-ph].

  125. S. Teber, “Electromagnetic current correlations in reduced quantum electrodynamics,” Phys. Rev. D 86, 025005 (2012), arXiv:1204.5664 [hep-ph].

    Article  ADS  Google Scholar 

  126. A. V. Kotikov and S. Teber, “Note on an application of the method of uniqueness to reduced quantum electrodynamics,” Phys. Rev. D 87, 087701 (2013), arXiv:1302.3939 [hep-ph].

    Article  ADS  Google Scholar 

  127. A. V. Kotikov and S. Teber, “Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultrarelativistic limit of graphene,” Phys. Rev. D 89, 065038 (2014), arXiv:1312.2430 [hep-ph].

    Article  ADS  Google Scholar 

  128. S. Teber, “Two-loop fermion self-energy and propagator in reduced QED3,2,” Phys. Rev. D 89, 067702 (2014), arXiv:1402.5032 [hep-ph].

    Article  ADS  Google Scholar 

  129. S. Teber and A. V. Kotikov, “Field theoretic renormalization study of reduced quantum electrodynamics and applications to the ultrarelativistic limit of Dirac liquids,” Phys. Rev. D 97, 074004 (2018), arXiv:1801.10385 [hep-th].

  130. S. Teber and A. V. Kotikov, “Interaction corrections to the minimal conductivity of graphene via dimensional regularization,” Europhys. Lett. 107, 57001 (2014), arXiv:1407.7501 [cond-mat.mes-hall].

    Article  ADS  Google Scholar 

  131. S. Teber and A. V. Kotikov, “Field theoretic renormalization study of interaction corrections to the universal ac conductivity of graphene,” arXiv:1802.09898 [cond-mat.mes-hall].

  132. S. Teber and A. V. Kotikov, “The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multi-loop calculations,” Theor. Math. Phys. 190, 446 (2017), arXiv:1602.01962 [hep-th].

  133. A. V. Kotikov, “Critical behavior of 3D electrodynamics,” JETP Lett. 58, 731 (1993), A. V. Kotikov, “On the critical behavior (2+1)-dimensional QED,” Phys. Atom. Nucl. 75, 890 (2012), arXiv:1104.3888 [hep-ph].

  134. A. V. Kotikov, V. I. Shilin, and S. Teber, “Critical behaviour of (\(2 + 1\))-dimensional QED: \({1 \mathord{\left/ {\vphantom {1 {{{N}_{f}}}}} \right. \kern-0em} {{{N}_{f}}}}\)-corrections in the Landau gauge,” Phys. Rev. D 94, 056009 (2016), arXiv:1605.01911 [hep-th].

  135. A. V. Kotikov and S. Teber, “Critical behavior of (2 + 1)-dimensional QED: \({1 \mathord{\left/ {\vphantom {1 {{{N}_{f}}}}} \right. \kern-0em} {{{N}_{f}}}}\) corrections in an arbitrary nonlocal gauge,” Phys. Rev. D 94, 114011 (2016), arXiv:1609.06912 [hep-th].

  136. A. V. Kotikov and S. Teber, “Critical behaviour of reduced QED4,3 and dynamical fermion gap generation in graphene,” Phys. Rev. D 94, 114010 (2016), arXiv:1610.00934 [hep-th].

  137. A. V. Kotikov and S. Teber, “New results for a two-loop massless propagator-type Feynman diagram,” Teor. Mat. Fiz. 194, 331 (2018), arXiv:1611.07240 [hep-th].

  138. H. A. Chawdhry, M. A. Lim, and A. Mitov, “Two-loop five-point massless QCD amplitudes within the IBP approach,” arXiv:1805.09182 [hep-ph].

  139. D. I. Kazakov, “Analytical Methods for Multiloop Calculations: Two Lectures on the Method of Uniqueness,” Preprint JINR E2-84-410 (Joint Inst. Nucl. Res., Dubna, 1984).

    Google Scholar 

  140. G. Leibbrandt, “Introduction to the technique of dimensional regularization,” Rev. Mod. Phys. 47, 849 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  141. S. Narison, “Techniques of dimensional renormalization and applications to the two point functions of QCD and QED,” Phys. Rep. 84, 263 (1982).

    Article  ADS  Google Scholar 

  142. W. B. Kilgore, “Regularization schemes and higher order corrections,” Phys. Rev. D 83, 114005 (2011), arXiv:1102.5353 [hep-ph].

    Article  ADS  Google Scholar 

  143. G. Passarino and M. J. G. Veltman, “One loop corrections for e+ e– annihilation into µ+ μ in the Weinberg model,” Nucl. Phys. B 160, 151 (1979).

    Article  ADS  Google Scholar 

  144. A. Denner, “Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200,” Fortschr. Phys. 41, 307 (1993), arXiv:0709.1075 [hep-ph].

    Google Scholar 

  145. V. Shtabovenko, R. Mertig, and F. Orellana, “New developments in FeynCalc 9.0,” Comput. Phys. Commun. 207, 432 (2016), arXiv:1601.01167 [hep-ph].

  146. R. Mertig, M. Bohm, and A. Denner, “FEYN CALC: Computer algebraic calculation of Feynman amplitudes,” Comput. Phys. Commun. 64, 345 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  147. T. Hahn and M. Perez-Victoria, “Automatized one loop calculations in four-dimensions and D-dimensions,” Comput. Phys. Commun. 118, 153 (1999), hep-ph/9807565.

    Article  ADS  Google Scholar 

  148. T. Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,” Comput. Phys. Commun. 140, 418 (2001), hep-ph/0012260.

    Article  ADS  MATH  Google Scholar 

  149. T. Hahn, “New features in FormCalc 4,” Nucl. Phys., Proc. Suppl. 135, 333 (2004), hep-ph/0406288.

    Article  ADS  Google Scholar 

  150. S. G. Gorishnii and A. P. Isaev, “On an approach to the calculation of multiloop massless Feynman integrals,” Theor. Math. Phys. 62, 232 (1985).

    Article  Google Scholar 

  151. N. I. Usyukina, “On a representation for three point function,” Teor. Mat. Fiz. 22, 300 (1975).

    Article  Google Scholar 

  152. E. E. Boos and A. I. Davydychev, “A method of the evaluation of the vertex type Feynman integrals,” Moscow Univ. Phys. Bull. 42N3, 6 (1987).

  153. A. I. Davydychev, “Some exact results for N point massive Feynman integrals,” J. Math. Phys. 32, 1052 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  154. A. I. Davydychev, “Recursive algorithm of evaluating vertex type Feynman integrals,” J. Phys. A 25, 5587 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  155. A. I. Davydychev and J. B. Tausk, “Two loop selfenergy diagrams with different masses and the momentum expansion,” Nucl. Phys. B 397, 123 (1993).

    Article  ADS  Google Scholar 

  156. P. A. Baikov and K. G. Chetyrkin, “Four loop massless propagators: An algebraic evaluation of all master integrals,” Nucl. Phys. B 837, 186 (2010), arXiv:1004.1153 [hep-ph].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  157. A. G. Grozin, “Massless two-loop self-energy diagram: Historical review,” Int. J. Mod. Phys. A 27, 1230018 (2012), arXiv:1206.2572 [hep-ph].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. L. Adams, C. Bogner, E. Chaubey, A. Schweitzer, and S. Weinzierl, “Differential equations for Feynman integrals beyond multiple polylogarithms,” arXiv:1712.03532 [hep-ph].

  159. M. Hidding and F. Moriello, “All orders structure and efficient computation of linearly reducible elliptic Feynman integrals,” arXiv:1712.04441 [hep-ph]; L. Adams, E. Chaubey, and S. Weinzierl, “The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter,” arXiv:1804.11144 [hep-ph].

  160. J. Fleischer, A. V. Kotikov, and O. L. Veretin, “Analytic two loop results for selfenergy type and vertex type diagrams with one nonzero mass,” Nucl. Phys. B 547, 343 (1999), hep-ph/9808242.

    Article  ADS  Google Scholar 

  161. A. Kotikov, J. H. Kuhn, and O. Veretin, “Two-loop formfactors in theories with mass gap and Z-boson production,” Nucl. Phys. B 788, 47 (2008), hep-ph/0703013.

    Article  ADS  Google Scholar 

  162. A. V. Kotikov and L. N. Lipatov, “NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories,” Nucl. Phys. B 582, 19 (2000), hep-ph/0004008.

    Article  ADS  Google Scholar 

  163. A. V. Kotikov and L. N. Lipatov, “DGLAP and BFKL evolution equations in the N = 4 supersymmetric gauge theory,” hep-ph/0112346; A. V. Kotikov and L. N. Lipatov, “DGLAP and BFKL equations in the \(N = 4\) supersymmetric gauge theory,” Nucl. Phys. B 661, 19 (2003); A. V. Kotikov and L. N. Lipatov, Nucl. Phys. B 685 (E), 405 (2004), hep-ph/0208220.

  164. A. V. Kotikov, “The property of maximal transcendentality in the N = 4 supersymmetric Yang–Mills,” in Subtleties in Quantum Field Theory: Lev Lipatov Festschrift, Ed. by D. Diakonov (Petersburg Nucl. Phys. Inst., Gatchina, 2010), pp. 150–174; arXiv:1005.5029 [hep-th]; A. V. Kotikov, “The property of maximal transcendentality: Calculation of anomalous dimensions in the \(N\) = 4 SYM and master integrals,” Phys. Part. Nucl. 44, 374 (2013); A. V. Kotikov, “The property of maximal transcendentality: Calculation of master integrals,” Theor. Math. Phys. 176, 913 (2013), arXiv:1212.3732 [hep-ph]; A. V. Kotikov, “The property of maximal transcendentality: Calculation of Feynman integrals,” Theor. Math. Phys. 190, 391 (2017), arXiv:1601.00486 [hep-ph].

  165. M. Y. Kalmykov, B. A. Kniehl, B. F. L. Ward, and S. A. Yost, “Hypergeometric functions, their epsilon expansions and Feynman diagrams,” arXiv:0810.3238 [hep-th], M. Y. Kalmykov and B. A. Kniehl, “’Sixth root of unity’ and Feynman diagrams: Hypergeometric function approach point of view,” Nucl. Phys. B, Proc. Suppl. 205–206, 129 (2010), arXiv:1007.2373 [math-ph].

  166. A. P. Isaev, “Multiloop Feynman integrals and conformal quantum mechanics,” Nucl. Phys. B 662, 461 (2003), hep-th/0303056.

    Article  ADS  MATH  Google Scholar 

  167. D. I. Kazakov and A. V. Kotikov, “Correction to DIS cross-section ratio R = σlt in QCD,” Yad. Fiz. 46, 1767 (1987).

    Google Scholar 

  168. P. Heslop and V. V. Tran, “Multi-particle amplitudes from the four-point correlator in planar N = 4 SYM,” arXiv:1803.11491 [hep-th].

  169. A. V. Kotikov, “New method of massive Feynman diagrams calculation,” Mod. Phys. Lett. A 6, 677 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  170. A. V. Kotikov, “New method of massive Feynman diagrams calculation. Vertex type functions,” Int. J. Mod. Phys. A 7, 1977 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  171. J. M. Henn and J. C. Plefka, “Scattering amplitudes in gauge theories,” Lect. Notes Phys. 883, 1 (2014).

    Book  MATH  Google Scholar 

  172. F. Carlson, “Sur une classe de séries de Taylor,” Dissertation (Uppsala, Sweden, 1914).

  173. E. Panzer, “On the analytic computation of massless propagators in dimensional regularization,” Nucl. Phys. B 874, 567 (2013), arXiv:1305.2161 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  174. R. N. Lee and K. T. Mingulov, “DREAM, a program for arbitrary-precision computation of dimensional recurrence relations solutions, and its applications,” arXiv:1712.05173 [hep-ph].

  175. S. Teber, “Field Theoretic Study of Electron-Electron Interaction Effects in Dirac Liquids” (Habilitation, Sorbonne Université, 2017).

    Google Scholar 

  176. A. L. Pismensky, “Calculation of critical index η of the \({{\phi }^{3}}\)-theory in four-loop approximation by the conformal bootstrap technique,” Int. J. Mod. Phys. A 30, 1550138 (2015), arXiv:1511.03211 [hep-th].

  177. O. Mamroud and G. Torrents, “RG stability of integrable fishnet models,” JHEP 1706, 012 (2017), arXiv:1703.04152 [hep-th].

Download references

ACKNOWLEDGMENTS

We are very grateful to David Broadhurst, John Gracey, Valery Gusynin and Mikhail Kompaniets for their comments. The work of A.V.K. was supported in part by the Russian Foundation for Basic Research (Grant no. 16-02-00790-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kotikov.

Additional information

The article is published in the original.

7 APPENDIX A.

7 APPENDIX A.

GEGENBAUER POLYNOMIAL TECHNIQUE

This Appendix is devoted to a short presentation of the Gegenbauer polynomial technique. The latter should be considered as the effective (but rather cumbersome) method for calculating dimensionally regularized Feynman diagrams. In its modern form, it has been introduced by Chetyrkin, Kataev and Tkachov [46]. Later, subtle and important improvements were brought up by Kotikov [61] and we shall follow this reference in our brief review of the technique.

Hereafter we will use the variables \(x,y,...,\) which are usually used in coordinate space. But we can also think about the variables \(x,y,...\) as being some momenta. Thus, all formulae in this Appendix are also applicable in the momentum space. Such type of “duality” has already been considered in Sec. 4.5.

1.1 7.1 Presentation of the Method

The basic motivation for this technique lays in the fact that, in multi-loop computations, the complicated part of the integration is often the one over the angular variables. This task is considerably simplified by expanding some of the propagators in the integrand in terms of the Gegenbauer polynomials (the so-called multipole expansion):

$$\begin{gathered} \frac{1}{{{{{({{x}_{1}} - {{x}_{2}})}}^{{2\lambda }}}}}\sum\limits_{n = 0}^\infty {C_{n}^{\lambda }} ({{{\hat {x}}}_{1}} \cdot {{{\hat {x}}}_{2}}) \\ \times \,\,\left[ {\frac{{{{{(x_{1}^{2})}}^{{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2}}}}}}{{{{{(x_{2}^{2})}}^{{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2} + \lambda }}}}}\Theta (x_{2}^{2} - x_{1}^{2}) + (x_{1}^{2} \leftrightarrow x_{2}^{2})} \right], \\ \end{gathered} $$
((A1))

where \(C_{n}^{\lambda }\) is the Gegenbauer polynomial of degree n and \(\hat {x} = {x \mathord{\left/ {\vphantom {x {\sqrt {{{x}^{2}}} }}} \right. \kern-0em} {\sqrt {{{x}^{2}}} }},\) and then using the orthogonality relation of Gegenbauer polynomials on the unit \(D\)‑dimensional sphere:

$$\begin{gathered} \frac{1}{{{{\Omega }_{D}}}}\int {{{{\text{d}}}_{D}}} \hat {x}C_{n}^{\lambda }(\hat {z} \cdot \hat {x})C_{m}^{\lambda }(\hat {x} \cdot \hat {z}) \\ = {{\delta }_{{n,m}}}\frac{{\lambda \Gamma (n + 2\lambda )}}{{\Gamma (2\lambda )(n + \lambda )n!}},\,\,\,\,\lambda = \frac{D}{2} - 1, \\ \end{gathered} $$
((A2))

where \({{{\text{d}}}_{D}}\hat {x}\) is the surface element of the unit D-dimensional sphere and \({{\Omega }_{D}} = {{2{{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}} \mathord{\left/ {\vphantom {{2{{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}} {\Gamma ({D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2})}}} \right. \kern-0em} {\Gamma ({D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2})}}.\) The Gegenbauer polynomials can be defined from their generating function:

$$\begin{gathered} \frac{1}{{{{{(1 - 2xw + {{w}^{2}})}}^{\beta }}}} = \sum\limits_{k = 0}^\infty {C_{k}^{\beta }(x){{w}^{k}}} , \\ C_{n}^{\beta }(1) = \frac{{\Gamma (n + 2\beta )}}{{\Gamma (2\beta )n!}}, \\ \end{gathered} $$
((A3))

with some additional particular values given by:

$$\begin{gathered} C_{0}^{\lambda }(x) = 1,\,\,\,\,C_{1}^{\lambda }(x) = 2\lambda x, \\ C_{2}^{\lambda }(x) = 2\lambda (\lambda + 1){{x}^{2}} - \lambda . \\ \end{gathered} $$
((A4))

For our purpose, it is convenient to express the Gegenbauer polynomials in terms of traceless symmetric tensors [61]:

$$\begin{gathered} C_{n}^{\lambda }(\hat {x} \cdot \hat {z}){{({{x}^{2}}{{z}^{2}})}^{{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2}}}} = {{S}_{n}}(\lambda ){{x}^{{{{\mu }_{1}}{{\mu }_{2}} \cdots {{\mu }_{n}}}}}{{z}^{{{{\mu }_{1}}{{\mu }_{2}} \cdots {{\mu }_{n}}}}}, \\ {{S}_{n}}(\lambda ) = \frac{{{{2}^{n}}\Gamma (n + \lambda )}}{{n!\Gamma (\lambda )}}. \\ \end{gathered} $$
((A5))

From Eq. (A5) for \(x = z\) and the last equation in (A3), we deduce the following equation for products of traceless tensors:

$${{S}_{n}}(\lambda ){{z}^{{{{\mu }_{1}}{{\mu }_{2}} \cdots {{\mu }_{n}}}}}{{z}^{{{{\mu }_{1}}{{\mu }_{2}} \cdots {{\mu }_{n}}}}} = \frac{{\Gamma (n + 2\lambda )}}{{\Gamma (2\lambda )n!}}{{z}^{{2n}}}.$$
((A6))

With the help of Eq. (A5), Eq. (A1) can be rewritten as:

$$\begin{gathered} \frac{1}{{{{{({{x}_{1}} - {{x}_{2}})}}^{{2\lambda }}}}}\sum\limits_{n = 0}^\infty {{{S}_{n}}(\lambda )} x_{1}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}x_{2}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}} \\ \times \,\,\left[ {\frac{1}{{{{{(x_{2}^{2})}}^{{n + \lambda }}}}}\Theta (x_{2}^{2} - x_{1}^{2}) + (x_{1}^{2} \leftrightarrow x_{2}^{2})} \right]. \\ \end{gathered} $$
((A7))

Notice that, for a propagator with arbitrary index, Eq. (A1) can be generalized as:

$$\begin{gathered} \frac{1}{{{{{({{x}_{1}} - {{x}_{2}})}}^{{2\beta }}}}}\sum\limits_{n = 0}^\infty {C_{n}^{\beta }({{{\hat {x}}}_{1}} \cdot {{{\hat {x}}}_{2}})} \\ \times \,\,\left[ {\frac{{{{{(x_{1}^{2})}}^{{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2}}}}}}{{{{{(x_{2}^{2})}}^{{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2} + \beta }}}}}\Theta (x_{2}^{2} - x_{1}^{2}) + (x_{1}^{2} \leftrightarrow x_{2}^{2})} \right], \\ \end{gathered} $$
((A8))

where \(C_{n}^{\beta }(x)\) can then be related to \(C_{{n - 2k}}^{\lambda }(x)\) (\(0 \leqslant k \leqslant [{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2}]\)) with the help of:

$$\begin{gathered} C_{n}^{\delta }(x) = \sum\limits_{k = 0}^{[{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2}]} {C_{{n - 2k}}^{\lambda }} (x)\frac{{(n - 2k + \lambda )\Gamma (\lambda )}}{{k!\Gamma (\delta )}} \\ \times \,\,\frac{{\Gamma (n + \delta - k)\Gamma (k + \delta - \lambda )}}{{\Gamma (n - k + \lambda + 1)\Gamma (\delta - \lambda )}}. \\ \end{gathered} $$
((A9))

Moreover, the series appearing upon expanding the propagators and after performing all integrations may sometimes be resummed in the form of a generalized hypergeometric function \(_{3}{{F}_{2}}\) of unit argument. There is a very useful transformation property relating such hypergeometric functions. Even though not directly connected with Gegenbauer polynomials, we mention it here:

$$\begin{gathered} _{3}{{F}_{2}}(a,b,c;e,f;1) \\ = \frac{{\Gamma (1 - a)\Gamma (e)\Gamma (f)\Gamma (c - b)}}{{\Gamma (e - b)\Gamma (f - b)\Gamma (1 + b - a)\Gamma (c)}} \\ \times \,{{\,}_{3}}{{F}_{2}}(b,b - e + 1,b - f + 1; \\ 1 + b - c,1 + b - a;1) + (b \leftrightarrow c). \\ \end{gathered} $$
((A10))

Of peculiar importance is the case where \(e = b + 1\) in which case the \(_{3}{{F}_{2}}\) function can be expressed in terms of another \(_{3}{{F}_{2}}\) plus a term involving only products of Gamma functions:

$$\begin{gathered} \sum\limits_{p = 0}^\infty {\frac{{\Gamma (p + a)\Gamma (p + c)}}{{p!\Gamma (p + f)}}} \frac{1}{{p + b}} \\ = \frac{{\Gamma (a)\Gamma (1 - a)\Gamma (b)\Gamma (c - b)}}{{\Gamma (f - b)\Gamma (1 + b - a)}} - \frac{{\Gamma (1 - a)\Gamma (a)}}{{\Gamma (f - c)\Gamma (1 + c - f)}} \\ \times \,\,\sum\limits_{p = 0}^\infty {\frac{{\Gamma (p + c - f + 1)\Gamma (p + c)}}{{p!\Gamma (p + 1 + c - a)}}} \frac{1}{{p + c - b}}. \\ \end{gathered} $$
((A11))

1.2 7.2 One-Loop Integral

Let’s consider some simple examples in order to illustrate the method. We start with the one-loop massless p-type diagram with two arbitrary indices in \(x\)-space (transformation rules between x-space and p‑space are provided in Sec. 4.5):

$$\begin{gathered} J(D,z,\alpha ,\beta ) = \int {\frac{{{{{\text{d}}}^{D}}x}}{{{{x}^{{2\alpha }}}{{{(x - z)}}^{{2\beta }}}}}} , \\ {{{\text{d}}}^{D}}x = \frac{1}{2}{{x}^{{2\lambda }}}d{{x}^{2}}{{d}_{D}}\hat {x}. \\ \end{gathered} $$
((A12))

Combining Eqs. (A8) and (A9), the integral can be separated into a radial and an angular part as follows:

$$\begin{gathered} J(D,z,\alpha ,\beta ) = \frac{1}{2}\sum\limits_{n = 0}^\infty {\sum\limits_{k = 0}^{[{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2}]} {\int\limits_0^\infty {d{{x}^{2}}} } } {{({{x}^{2}})}^{{\lambda - \alpha }}} \\ \times \,\,\left[ {\frac{{{{{({{x}^{2}})}}^{{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2}}}}}}{{{{{({{z}^{2}})}}^{{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2} + \beta }}}}}\Theta ({{z}^{2}} - {{x}^{2}}) + ({{x}^{2}} \leftrightarrow {{y}^{2}})} \right] \\ \times \,\,\underbrace {\int {{{{\text{d}}}_{D}}\hat {x}C_{{n - 2k}}^{\lambda }(\hat {x} \cdot \hat {z})} }_{{{\Omega }_{D}}{{\delta }_{{n,2k}}}}\frac{{(n - 2k + \lambda )\Gamma (\lambda )}}{{k!\Gamma (\beta )}} \\ \times \,\,\frac{{\Gamma (n + \beta - k)\Gamma (k + \beta - \lambda )}}{{\Gamma (n + \lambda + 1 - k)\Gamma (\beta - \lambda )}}, \\ \end{gathered} $$
((A13))

where the orthogonality relation, Eq. (A2) has been used to compute the angular part. It then follows that n must be an even integer: \(n = 2p\) and \(k = [{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2}] = p.\) The remaining radial integrals are easily performed. The resulting expression can be conveniently written as a sum of two one-fold series:

$$\begin{gathered} J(D,z,\alpha ,\beta ) = \frac{{{{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}}}{{{{{({{z}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}}\frac{1}{{\Gamma (\beta )\Gamma (\beta - \lambda )}} \\ \times \,\,\sum\limits_{p = 0}^\infty {\frac{{\Gamma (p + \beta )\Gamma (p + \beta - \lambda )}}{{p!\Gamma (p + \lambda + 1)}}} \\ \times \,\,\left[ {\frac{1}{{p + \alpha + \beta - 1 - \lambda }} + \frac{1}{{p - \alpha + \lambda + 1}}} \right]. \\ \end{gathered} $$
((A14))

This expression can be further simplified by transforming the first sum with the help of Eq. (A11) with \(a = \beta - \lambda ,\)\(b = \alpha + \beta - 1 - \lambda ,\)\(c = \beta \) and \(f = \lambda + 1.\) Indeed, this yields:

$$\begin{gathered} \sum\limits_{p = 0}^\infty {\frac{{\Gamma (p + \beta )\Gamma (p + \beta - \lambda )}}{{p!\Gamma (p + \lambda + 1)}}} \frac{1}{{p + \alpha + \beta - 1 - \lambda }} \\ \times \,\,\frac{{\Gamma (\beta - \lambda )\Gamma (1 + \lambda - \alpha )\Gamma (1 + \lambda - \beta )\Gamma (\alpha + \beta - 1 - \lambda )}}{{\Gamma (\alpha )\Gamma (2 + 2\lambda - \alpha - \beta )}} \\ - \,\,\sum\limits_{p = 0}^\infty {} \frac{{\Gamma (p + \beta )\Gamma (p + \beta - \lambda )}}{{p!\Gamma (p + \lambda + 1)}}\frac{1}{{p - \alpha + 1 + \lambda }}, \\ \end{gathered} $$
((A15))

and the sum on the lhs is simply the opposite of the second sum in \(J(D,z,\alpha ,\beta ).\) Hence, the sum of the two one-fold series reduces to a product of Γ-functions and we recover the well-known result:

$$\begin{gathered} J(D,z,\alpha ,\beta ) = \frac{{{{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}}}{{{{{({{z}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}}G(D,\alpha ,\beta ), \hfill \\ G(D,\alpha ,\beta ) = \frac{{a(\alpha )a(\beta )}}{{a(\alpha + \beta - 1 - \lambda )}}, \hfill \\ \end{gathered} $$
((A16))

where \(a(\alpha ) = \Gamma ({D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2} - {{\alpha )} \mathord{\left/ {\vphantom {{\alpha )} {\Gamma (\alpha )}}} \right. \kern-0em} {\Gamma (\alpha )}}\) and which was given in Eq. (2.17) in p-space.

1.3 7.3 One-Loop Integral with Traceless Products

We may next generalize this result to the case where a traceless product appears in the numerator:

$$\begin{gathered} {{J}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}(D,z,\alpha ,\beta ) = \int {{{{\text{d}}}^{D}}x} \frac{{{{x}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{x}^{{2\alpha }}}{{{(x - z)}}^{{2\beta }}}}}, \\ {{{\text{d}}}^{D}}x = \frac{1}{2}{{x}^{{2\lambda }}}d{{x}^{2}}{{d}_{D}}\hat {x}. \\ \end{gathered} $$
((A17))

Dimensional analysis suggests that this integral should have the form:

$${{J}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}(D,z,\alpha ,\beta ) = {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}\frac{{{{z}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{{({{z}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}}{{G}^{{(n,0)}}}(\alpha ,\beta ),$$
((A18))

where the coefficient function, \({{G}^{{(n,0)}}}(\alpha ,\beta ),\) is yet to be determined. In order to do so, we consider the scalar function:

$$\begin{gathered} {{z}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}{{J}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}(D,z,\alpha ,\beta ) = {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}\frac{{{{z}^{{2n}}}}}{{{{{({{z}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}} \\ \times \,\,\frac{{\Gamma (\lambda )\Gamma (n + 2\lambda )}}{{{{2}^{n}}\Gamma (2\lambda )\Gamma (n + \lambda )}}{{G}^{{(n,0)}}}(\alpha ,\beta ), \\ \end{gathered} $$
((A19))

where Eqs. (A18) and (A6) have been used. The corresponding integral can be evaluated by using the relation between traceless products and Gegenbauer polynomials, Eq. (A5):

$$\begin{gathered} {{z}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}{{J}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}(D,z,\alpha ,\beta ) = \int {{{{\text{d}}}^{D}}x} \frac{{{{z}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}{{x}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{x}^{{2\alpha }}}{{{(x - z)}}^{{2\beta }}}}} \\ = \frac{{n!\Gamma (\lambda )}}{{{{2}^{n}}\Gamma (n + \lambda )}}\int {{{{\text{d}}}^{D}}x} \frac{{{{C}_{n}}(\hat {z} \cdot \hat {x}){{{({{x}^{2}}{{z}^{2}})}}^{{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-0em} 2}}}}}}{{{{x}^{{2\alpha }}}{{{(x - z)}}^{{2\beta }}}}}, \\ \end{gathered} $$
((A20))

and then expanding the propagator in Gegenbauer polynomials as before. This yields:

$$\begin{gathered} {{z}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}{{J}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}(D,z,\alpha ,\beta ) = \frac{{n!\Gamma (\lambda )}}{{{{2}^{n}}\Gamma (n + \lambda )}}\frac{1}{2} \\ \times \,\,\sum\limits_{p = 0}^\infty {\sum\limits_{k = 0}^{[{p \mathord{\left/ {\vphantom {p 2}} \right. \kern-0em} 2}]} {\int {d{{x}^{2}}} } } {{({{x}^{2}})}^{{\lambda - \alpha }}} \\ \times \,\,\left[ {\frac{{{{{({{x}^{2}})}}^{{\tfrac{{p + n}}{2}}}}}}{{{{{({{y}^{2}})}}^{{\tfrac{{p - n}}{2} + \beta }}}}}\Theta ({{z}^{2}} - {{x}^{2}}) + ({{x}^{2}} \leftrightarrow {{y}^{2}})} \right] \\ \times \,\,\int {{{{\text{d}}}_{D}}\hat {x}{{C}_{n}}(\hat {z} \cdot \hat {x})} C_{{p - 2k}}^{\lambda }(\hat {x} \cdot \hat {z})\frac{{(p - 2k + \lambda )\Gamma (\lambda )}}{{k!\Gamma (\beta )}} \\ \times \,\,\frac{{\Gamma (p + \beta - k)\Gamma (k + \beta - \lambda )}}{{\Gamma (p + \lambda + 1 - k)\Gamma (\beta - \lambda )}}. \\ \end{gathered} $$
((A21))

The angular integral is non-zero for \(2k = p - n\) which implies that p must have the same parity as n and \(p \geqslant n.\) Separate analysis of the even and odd n cases yield, after some simple manipulations:

$$\begin{gathered} {{z}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}{{J}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}(D,z,\alpha ,\beta ) = {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}\frac{{{{z}^{{2n}}}}}{{{{{({{z}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}} \\ \times \,\,\frac{{\Gamma (\lambda )\Gamma (n + 2\lambda )}}{{{{2}^{n}}\Gamma (2\lambda )\Gamma (n + \lambda )}}\sum\limits_{m = 0}^\infty {B(m,\left. n \right|\beta ,\lambda )} \\ \times \,\,\left( {\frac{1}{{m + \alpha + \beta - 1 - \lambda }} + \frac{1}{{m + n - \alpha + \lambda + 1}}} \right), \\ \end{gathered} $$
((A22))

where:

$$\begin{gathered} B(m,\left. n \right|\beta ,\lambda ) = \frac{{\Gamma (m + n + \beta )}}{{m!\Gamma (m + n + \lambda + 1)\Gamma (\beta )}} \\ \times \,\,\frac{{\Gamma (m + \beta - \lambda )}}{{\Gamma (\beta - \lambda )}}. \\ \end{gathered} $$
((A23))

Comparing Eqs. (A22) and (A18), we see that the coefficient function equals the sum of two one-fold series:

$$\begin{gathered} {{G}^{{(n,0)}}}(D,\alpha ,\beta ) = \sum\limits_{m = 0}^\infty {B(m,\left. n \right|\beta ,\lambda )} \\ \times \,\,\left( {\frac{1}{{m + \alpha + \beta - 1 - \lambda }} + \frac{1}{{m + n - \alpha + \lambda + 1}}} \right). \\ \end{gathered} $$
((A24))

Such a series representation reduces to a product of Γ-functions upon using the transformation properties of hypergeometric functions:

$$\begin{gathered} {{G}^{{(n,0)}}}(D,\alpha ,\beta ) = \frac{{{{a}_{n}}(\alpha ){{a}_{0}}(\beta )}}{{{{a}_{n}}(\alpha + \beta - \lambda - 1)}}, \\ {{a}_{n}}(\alpha ) = \frac{{\Gamma (n + {D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2} - \alpha )}}{{\Gamma (\alpha )}}, \\ \end{gathered} $$
((A25))

in accordance with Eq. (2.21).

1.4 7.4 One-Loop Integral with Heaviside Functions

The above results yield integration rules for Feynman integrals involving traceless products and Heaviside functions which were given in Ref. [61]. From Eq. (A22) we indeed recover the basic results of this reference:

$$\begin{gathered} \int {{{{\text{d}}}^{D}}x} \frac{{{{x}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{x}^{{2\alpha }}}{{{(x - y)}}^{{2\beta }}}}}\Theta ({{x}^{2}} - {{y}^{2}}) \\ = {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}\frac{{{{y}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{{({{y}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}}\sum\limits_{m = 0}^\infty {\frac{{B(m,\left. n \right|\beta ,\lambda )}}{{m + \alpha + \beta - 1 - \lambda }}} \\ \mathop = \limits^{(\beta = \lambda )} {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}\frac{{{{y}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{{({{y}^{2}})}}^{{ - 1}}}}}\frac{1}{{\Gamma (\lambda )}}\frac{1}{{(\alpha - 1)(n + \lambda )}}, \\ \end{gathered} $$
((A26))

and

$$\begin{gathered} \int {{{{\text{d}}}^{D}}x\frac{{{{x}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{x}^{{2\alpha }}}{{{(x - y)}}^{{2\beta }}}}}} \Theta ({{y}^{2}} - {{x}^{2}}) = {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}\frac{{{{y}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{{({{y}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}} \\ \times \,\,\sum\limits_{m = 0}^\infty {\frac{{B(m,\left. n \right|\beta ,\lambda )}}{{m + n - \alpha + 1 + \lambda }}} \mathop = \limits^{(\beta = \lambda )} {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}\frac{{{{y}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{{({{y}^{2}})}}^{{\alpha - 1}}}}} \\ \times \,\,\frac{1}{{\Gamma (\lambda )}}\frac{1}{{(n + \lambda + 1 - \alpha )(n + \lambda )}}, \\ \end{gathered} $$
((A27))

where the peculiar case \(\beta = \lambda \) has been explicitly displayed. The following more complicated cases are also useful (see [61]):

$$\begin{gathered} \int {{{{\text{d}}}^{D}}x\frac{{{{x}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{x}^{{2\alpha }}}{{{(x - y)}}^{{2\beta }}}}}} \Theta ({{x}^{2}} - {{z}^{2}}) = {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}{{y}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}} \\ \times \,\,\left[ {\frac{{\Theta ({{y}^{2}} - {{z}^{2}})}}{{{{{({{y}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}}{{G}^{{n,0}}}(\alpha ,\beta )} \right. + \sum\limits_{m = 0}^\infty {\frac{{B(m,\left. n \right|\beta ,\lambda )}}{{{{{({{z}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}}} \\ \times \,\,\left( {{{{\left( {\frac{{{{y}^{2}}}}{{{{z}^{2}}}}} \right)}}^{m}}\frac{{\Theta ({{z}^{2}} - {{y}^{2}})}}{{m + \alpha + \beta - 1 - \lambda }}} \right. \\ - \,\,{{\left( {\frac{{{{z}^{2}}}}{{{{y}^{2}}}}} \right)}^{{m + n + \beta }}}\left. {\left. {\frac{{\Theta ({{y}^{2}} - {{z}^{2}})}}{{m - \alpha + n + 1 + \lambda }}} \right)} \right] \\ \mathop = \limits^{(\beta = \lambda )} {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}\frac{1}{{\Gamma (\lambda )}}{{y}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}\left[ {\frac{{\Theta ({{y}^{2}} - {{z}^{2}})}}{{{{{({{y}^{2}})}}^{{\alpha - 1}}}}}\frac{1}{{(\alpha - 1)(n + \lambda + 1 - \alpha )}}} \right. \\ \left. { + \,\,\frac{1}{{{{{({{z}^{2}})}}^{{\alpha - 1}}}}}\frac{1}{{n + \lambda }}\left( {\frac{{\Theta ({{z}^{2}} - {{y}^{2}})}}{{\alpha - 1}} - {{{\left( {\frac{{{{z}^{2}}}}{{{{y}^{2}}}}} \right)}}^{{n + \lambda }}}\frac{{\Theta ({{y}^{2}} - {{z}^{2}})}}{{n + 1 + \lambda - \alpha }}} \right)} \right], \\ \end{gathered} $$
((A28))

and

$$\begin{gathered} \int {{{{\text{d}}}^{D}}x} \frac{{{{x}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}}}{{{{x}^{{2\alpha }}}{{{(x - y)}}^{{2\beta }}}}}\Theta ({{z}^{2}} - {{x}^{2}}) = {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}{{y}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}} \\ \times \,\,\left[ {\frac{{\Theta ({{z}^{2}} - {{y}^{2}})}}{{{{{({{y}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}}{{G}^{{n,0}}}(\alpha ,\beta )} \right. - \sum\limits_{m = 0}^\infty {\frac{{B(m,\left. n \right|\beta ,\lambda )}}{{{{{({{z}^{2}})}}^{{\alpha + \beta - \lambda - 1}}}}}} \\ \times \,\,\left( {{{{\left( {\frac{{{{y}^{2}}}}{{{{z}^{2}}}}} \right)}}^{m}}\frac{{\Theta ({{z}^{2}} - {{y}^{2}})}}{{m + \alpha + \beta - 1 - \lambda }}} \right. \\ - \,\,{{\left( {\frac{{{{z}^{2}}}}{{{{y}^{2}}}}} \right)}^{{m + n + \beta }}}\left. {\left. {\frac{{\Theta ({{y}^{2}} - {{z}^{2}})}}{{m - \alpha + n + 1 + \lambda }}} \right)} \right] \\ \mathop = \limits^{(\beta = \lambda )} {{\pi }^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-0em} 2}}}}\frac{1}{{\Gamma (\lambda )}}{{y}^{{{{\mu }_{1}} \cdots {{\mu }_{n}}}}}\left[ {\frac{{\Theta ({{z}^{2}} - {{y}^{2}})}}{{{{{({{y}^{2}})}}^{{\alpha - 1}}}}}\frac{1}{{(\alpha - 1)(n + \lambda + 1 - \alpha )}}} \right. \\ \left. { - \,\,\frac{1}{{{{{({{z}^{2}})}}^{{\alpha - 1}}}}}\frac{1}{{n + \lambda }}\left( {\frac{{\Theta ({{z}^{2}} - {{y}^{2}})}}{{\alpha - 1}} - {{{\left( {\frac{{{{z}^{2}}}}{{{{y}^{2}}}}} \right)}}^{{n + \lambda }}}\frac{{\Theta ({{y}^{2}} - {{z}^{2}})}}{{n + 1 + \lambda - \alpha }}} \right)} \right]. \\ \end{gathered} $$
((A29))

With these rules in hand, the Gegenbauer polynomials technique allows to compute the massless p-type two-loop master integral with up three arbitrary indices as a linear combination of up to four hypergeometric functions \(_{3}{{F}_{2}}\) of argument 1, a result which can be found in Ref. [61]. In particular, the method provides an alternative representation for the integral \(I(1 + a)\) found in the previous section with functional equations (see Eq. (4.138)).

1.5 7.5 Application to \(I(1 + a)\)

Here we reconsider the simple but very important example of: \(I(1 + a)\) = \(J(D,p,1,1,1,1,1 + a)\) (see Eq. (3.28)). Applying the rules of the previous paragraph, its coefficient function \({{{\text{C}}}_{D}}[I(1 + a)]\) can be expressed as:

$$\begin{gathered} {{{\text{C}}}_{D}}[I(a + 1)] = 2\frac{{{{\Gamma }^{2}}(1 - \varepsilon )\Gamma ( - \varepsilon - a)\Gamma (a + 2\varepsilon )}}{{\Gamma (2 - 2\varepsilon )\Gamma (1 - 3\varepsilon - a)}} \\ \times \,\,\left[ {\frac{{\pi \Gamma (1 - a - 3\varepsilon )\Gamma (1 - a - 2\varepsilon )\Gamma {{{(a + 2\varepsilon )}}^{{}}}}}{{\Gamma (1 - \varepsilon )\Gamma ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2} - a - 2\varepsilon )\Gamma ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2} + 2\varepsilon + a)}}} \right. \\ - \,\,\left. {\sum\limits_{n = 1}^\infty {\frac{{\Gamma (n + 1 - 2\varepsilon )}}{{\Gamma (n + 1 + a)}}} \frac{1}{{n + a + 1 + \varepsilon }}} \right], \\ \end{gathered} $$
((A30))

which coincides with Eq. (3.58) after changing of variables.

So, using the method of Gegenbauer polynomials, the results for \(I(1 + a)\) can be expressed as a combination of Γ-functions together with one hypergeometric function with the arguments “1”. Such result can be successfully used for an efficient ε-expansion of the diagram. Moreover, the combination of the two results (4.138) and (A30) provides the advertised relation (3.59) between two hypergeometric functions of argument “–1” and one hypergeometric function of argument “\(1\)”. Such a relation is absent in standard textbooks and was recently proven exactly in [137].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotikov, A.V., Teber, S. Multi-Loop Techniques for Massless Feynman Diagram Calculations. Phys. Part. Nuclei 50, 1–41 (2019). https://doi.org/10.1134/S1063779619010039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619010039

Navigation