Skip to main content
Log in

The 6D Gauss–Bonnet Supergravity Invariant

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review the recent construction of the off-shell \(\mathcal{N} = (1,0)\) supersymmetrization of the Gauss–Bonnet curvature squared combination in six dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Conformal superspace was first introduced by D. Butter for 4D \(\mathcal{N} = 1\) [34] and \(\mathcal{N} = 2\) [35] supergravity (see also the seminal work by Kugo and Uehara [36]) and it was developed and extended to 3D \(\mathcal{N} - \)extended supergravity [37], 5D \(\mathcal{N} = 1\) supergravity [26], and recently to 6D \(\mathcal{N} = (1,0)\) supergravity [33], see also [38].

REFERENCES

  1. I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, Nucl. Phys. B 507, 571 (1997).

    Article  ADS  Google Scholar 

  2. I. Antoniadis, R. Minasian, S. Theisen, and P. Vanhove, Classical Quantum Gravity 20, 5079 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. J. T. Liu and R. Minasian, Nucl. Phys. B 874, 413 (2013).

    Article  ADS  Google Scholar 

  4. J. M. Maldacena, A. Strominger, and E. Witten, J. High Energy Phys. 9712, 002 (1997).

  5. C. Vafa, Adv. Theor. Math. Phys. 2, 207 (1998).

    Article  MathSciNet  Google Scholar 

  6. G. Lopes Cardoso, B. de Wit, and T. Mohaupt, Phys. Lett. B 451, 309 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Lopes Cardoso, B. de Wit, J. Kappeli, and T. Mohaupt, J. High Energy Phys. 0012, 019 (2000).

  8. R. Kallosh, arXiv:1412.7117 [hep-th].

  9. R. Utiyama and B. S. de Witt, J. Math. Phys. 3, 608 (1962).

    Article  ADS  Google Scholar 

  10. Z. Komargodski and A. Schwimmer, J. High Energy Phys. 1112, 099 (2011).

  11. K. S. Stelle, Phys. Rev. D 16, 953 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  12. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  13. S. Deser and A. Schwimmer, Phys. Lett. B 309, 279 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  14. B. Zwiebach, Phys. Lett. B 156, 315 (1985).

    Article  ADS  Google Scholar 

  15. S. Deser and A. N. Redlich, Phys. Lett. B 176, 350 (1986);

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Deser and A. N. Redlich, Phys. Lett. B 186(E), 461 (1987).

  17. S. Cecotti, S. Ferrara, L. Girardello, and M. Porrati, Phys. Lett. B 164, 46 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Theisen, Nucl. Phys. B 263, 687 (1986).

    Article  ADS  Google Scholar 

  19. I. L. Buchbinder and S. M. Kuzenko, Nucl. Phys. B 308, 162 (1988).

    Article  ADS  Google Scholar 

  20. S. Cecotti, S. Ferrara, L. Girardello, M. Porrati, and A. Pasquinucci, Phys. Rev. D 33, 2504 (1986).

    Article  ADS  Google Scholar 

  21. S. Ferrara, S. Sabharwal, and M. Villasante, Phys. Lett. B 205, 302 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Ferrara and M. Villasante, J. Math. Phys. 30, 104 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Le Du, Eur. Phys. J. C 5, 181 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Butter, B. de Wit, S. M. Kuzenko, and I. Lodato, J. High Energy Phys. 1312, 062 (2013).

  25. M. Ozkan and Y. Pang, J. High Energy Phys. 1303, 158 (2013);M. Ozkan and Y. Pang, J. High Energy Phys. 1307(E), 152 (2013).

  26. M. Ozkan and Y. Pang, J. High Energy Phys. 1308, 042 (2013).

  27. D. Butter, S. M. Kuzenko, J. Novak, and G. Tartaglino-Mazzucchelli, J. High Energy Phys. 1502, 111 (2015).

    Article  ADS  Google Scholar 

  28. E. Bergshoeff, A. Salam, and E. Sezgin, Phys. Lett. B 173, 73 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  29. E. Bergshoeff, A. Salam, and E. Sezgin, Nucl. Phys. B 279, 659 (1987).

    Article  ADS  Google Scholar 

  30. H. Nishino and S. J. Gates, Jr., Phys. Lett. B 173, 417 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  31. E. Bergshoeff and M. Rakowski, Phys. Lett. B 191, 399 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Novak, M. Ozkan, Y. Pang, and G. Tartaglino-Mazzucchelli, Phys. Rev. Lett. 119, 111602 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  33. E. Bergshoeff, E. Sezgin, and A. van Proeyen, Nucl. Phys. B 264, 653 (1986); E. Bergshoeff, E. Sezgin, and A. van Proeyen, Nucl. Phys. B 598(E), 667 (2001).

  34. D. Butter, S. M. Kuzenko, J. Novak, and S. Theisen, J. High Energy Phys. 1612, 072 (2016).

  35. D. Butter, Ann. Phys. 325, 1026 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Butter, J. High Energy Phys. 1110, 030 (2011).

  37. T. Kugo and S. Uehara, Prog. Theor. Phys. 73, 235 (1985).

    Article  ADS  Google Scholar 

  38. D. Butter, S. M. Kuzenko, J. Novak, and G. Tartaglino-Mazzucchelli, J. High Energy Phys. 1309, 072 (2013).

  39. D. Butter, J. Novak, and G. Tartaglino-Mazzucchelli, J. High Energy Phys. 1705, 133 (2017).

    Article  ADS  Google Scholar 

  40. W. D. Linch, III and G. Tartaglino-Mazzucchelli, J. High Energy Phys. 1208, 075 (2012).

  41. L. Castellani, R. D’Auria, and P. Fre, Supergravity and superstrings: A Geometric perspective, Singapore: World Scientific, 1991.

    Book  MATH  Google Scholar 

  42. M. F. Hasler, Eur. Phys. J. C 1, 729 (1998).

    Article  ADS  Google Scholar 

  43. S. J. Gates, Jr., Nucl. Phys. B 541, 615 (1999).

    Article  ADS  Google Scholar 

  44. S. J. Gates, Jr., M. T. Grisaru, M. E.Knutt-Wehlau, and W. Siegel, Phys. Lett. B 421, 203 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  45. D. Butter, S. M. Kuzenko, J. Novak, and G. Tartaglino-Mazzucchelli, J. High Energy Phys. 1502, 111 (2015).

    Article  ADS  Google Scholar 

  46. D. Butter, S. M. Kuzenko, J. Novak, and G. Tartaglino-Mazzucchelli, J. High Energy Phys. 1310, 073 (2013).

  47. S. M. Kuzenko, J. Novak, and G. Tartaglino-Mazzucchelli, J. High Energy Phys. 1401, 121 (2014).

    Article  ADS  Google Scholar 

  48. S. M. Kuzenko, J. Novak, and G. Tartaglino-Mazzucchelli, J. High Energy Phys. 1509, 081 (2015).

  49. D. Butter, S. M. Kuzenko, and J. Novak, J. High Energy Phys. 1209, 131 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to D. Butter, J. Novak, M. Ozkan and Y. Pang for collaboration. This work was supported in part by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy (P7/37) and in part by the KU Leuven C1 grant ZKD1118 C16/16/005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Tartaglino-Mazzucchelli.

Additional information

1The article is published in the original.

2Based on part of the plenary talk “Higher-derivative invariants in 6D\(\mathcal{N} = (1,0)\) supergravity” presented by GT-M at the SQS’17 (Dubna, Russia, July 31–August 5, 2017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartaglino-Mazzucchelli, G. The 6D Gauss–Bonnet Supergravity Invariant. Phys. Part. Nuclei 49, 884–889 (2018). https://doi.org/10.1134/S1063779618050386

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618050386

Keywords

Navigation