Skip to main content
Log in

One-Loop Divergences in the Six-Dimensional \(\mathcal{N}\) = (1, 0) Supersymmetric Yang–Mills Theory

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We consider six-dimansional \(\mathcal{N} = (1,0)\) supersymmetric Yang–Mills theory with hypermultiplets which is formulated in \(\mathcal{N} = (1,0)\) harmonic superspace. We use the supergraph technique to study the one-loop divergences in the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. It should be noted that \(\mathcal{N} = (1,0)\) theories contain the anomaly [1416].

REFERENCES

  1. P. S. Howe and K. S. Stelle, “Ultraviolet divergences in higher dimensional supersymmetric Yang–Mills theories,” Phys. Lett. B 137, 175–180 (1984).

    Article  ADS  Google Scholar 

  2. E. S. Fradkin and A. A. Tseytlin, “Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories,” Nucl. Phys. B 227, 252–290 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  3. N. Marcus and A. Sagnotti, “A test of finiteness predictions for supersymmetric theories,” Phys. Lett. B 135, 85–90 (1984).

    Article  ADS  Google Scholar 

  4. E. A. Ivanov, A. V. Smilga and B. M. Zupnik, “Renormalizable supersymmetric gauge theory in six dimensions,” Nucl. Phys. B 726, 131 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. G. Bossard, E. Ivanov, and A. Smilga, “Ultraviolet behaviour of 6D supersymmetric Yang–Mills theories and harmonic superspace,” J. High Energy Phys. 1512, 085 (2015).

  6. L. V. Bork, D. I. Kazakov, and D. E. Vlasenko, “Challenges of D = 6 N = (1,1) SYM theory,” Phys.Lett. B 734, 111–115 (2014).

    Article  ADS  MATH  Google Scholar 

  7. L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev, and D. E. Vlasenko, “Divergences in maximal supersymmetric Yang–Mills theories in diverse dimensions,” J. High Energy Phys. 1511, 059 (2015).

  8. I. L. Buchbinder, E. A. Ivanov, and N. G. Pletnev, “Superfield approach to the construction of effective action in quantum field theory with extended supersymmetry,” Phys. Part. Nucl. 47, 291–369 (2016).

    Article  Google Scholar 

  9. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Cambridge University Press, Cambridge, 2001).

    Book  MATH  Google Scholar 

  10. P. S. Howe, G. Sierra, and P. K. Townsend, “Supersymmetry in six dimensions,” Nucl. Phys. B 221, 331–348 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  11. P. S. Howe, K. S. Stelle, P. C. West, “N = 1 d = 6 harmonic superspace,” Classical Quantum Gravity 2, 815 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. B. M. Zupnik, “Six-dimensional supergauge theories in the harmonic superspace,” J. Nucl. Phys. (Moscow) 44, 512 (1986).

    Google Scholar 

  13. E. I. Buchbinder, B. A. Ovrut, I. L. Buchbinder, E. A. Ivanov, and S. M. Kuzenko, “Low-energy effective action in N = 2 supersymmetric field theories,” Phys. Part. Nucl. 32, 641–674 (2001).

    Google Scholar 

  14. P. K. Townsend and G. Sierra, “Chiral anomalies and constraints on the gauge group in higher-dimensional supersymmetric Yang–Mills theories,” Nucl. Phys. B 222, 493–501 (1983).

    Article  ADS  Google Scholar 

  15. S. M. Kuzenko, J. Novak, and I. S. Samsonov, “The anomalous current multiplet in \(6D\) minimal supersymmetry,” J. High Energy Phys. 1602, 132 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S. M. Kuzenko, J. Novak, and I. S. Samsonov, “Chiral anomalies in six dimensions from harmonic superspace,” J. High Energy Phys. 1711, 145 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. I. L. Buchbinder, E. A. Ivanov, M. B. Merzlikin, and K. V. Stepanyantz, “One-loop divergences in the \(6D,N = (1,0)\) Abelian gauge theory,” Phys. Lett. B 763, 375–381 (2016).

    Article  ADS  MATH  Google Scholar 

  18. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin, and K. V. Stepanyantz, “One-loop divergences in \(6D,N = (1,0)\) SYM theory,” J. High Energy Phys. 1701, 128 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin, and K. V. Stepanyantz, “Supergraph analysis of the one-loop divergences in \(6D\), \(\mathcal{N} = (1,0)\) and \(\mathcal{N} = (1,1)\) gauge theories,” Nucl. Phys. B 921, 127–158 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin, and K. V. Stepanyantz, “On the two-loop divergences of the 2‑point hypermultiplet supergraphs for \(6D,\mathcal{N} = (1,1)\) SYM theory,” arXiv:1711.11514 (2017).

  21. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin, “Leading low-energy effective action in \(6D,\mathcal{N} = (1,1)\) SYM theory with hypermultiplets,” arXiv:1711.03302.

Download references

ACKNOWLEDGMENTS

The work is supported in part by the grant of Russian Ministry of Education and Science, project no. 3.1386.2017 and RFBR grant no. 18-02-00153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Merzlikin.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merzlikin, B.S. One-Loop Divergences in the Six-Dimensional \(\mathcal{N}\) = (1, 0) Supersymmetric Yang–Mills Theory. Phys. Part. Nuclei 49, 943–945 (2018). https://doi.org/10.1134/S1063779618050295

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618050295

Keywords

Navigation