Skip to main content
Log in

Goldstino Superfields in Supergravity

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review two off-shell models for spontaneously broken \(\mathcal{N} = 1\) and \(\mathcal{N} = 2\) supergravity proposed in arXiv:1702.02423 and arXiv:1707.07390. New results on nilpotent \(\mathcal{N} = 1\) supergravity are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Since Deser and Zumino [13] made use of on-shell supergravity, it was next to impossible to construct a complete supergravity-Goldstino action in their setting.

  2. In curved superspace, the covariant derivatives \({{\mathcal{D}}_{A}} = ({{\mathcal{D}}_{a}},{{\mathcal{D}}_{\alpha }},{{\bar {\mathcal{D}}}^{{\dot {\alpha }}}})\) have the form \({{\mathcal{D}}_{A}} = E_{A}^{M}{{\partial }_{M}} + \tfrac{1}{2}\Omega _{A}^{{bc}}{{M}_{{bc}}},\) where \({{M}_{{bc}}}\) is the Lorentz generator. Our description of the old minimal formulation for \(\mathcal{N} = 1\) supergravity follows [19], where the graded commutation relations for the covariant derivatives are given.

  3. These backgrounds are maximally supersymmetric solutions of pure \({{R}^{2}}\) supergravity [35].

REFERENCES

  1. E. Ivanov and A. Kapustnikov, “General relationship between linear and nonlinear realisations of supersymmetry,” J. Phys. A 11, 2375 (1978); E. Ivanov and A. Kapustnikov, “The nonlinear realisation structure of models with spontaneously broken supersymmetry,” J. Phys. G 8, 167 (1982).

    Article  ADS  Google Scholar 

  2. D. V. Volkov and V. P. Akulov, “Possible universal neutrino interaction,” JETP Lett. 16, 438 (1972);

    ADS  MATH  Google Scholar 

  3. D. V. Volkov and V. P. Akulov, “Is the neutrino a Goldstone particle?,” Phys. Lett. B 46, 109 (1973).

    Article  ADS  Google Scholar 

  4. I. Bandos, M. Heller, S. M. Kuzenko, L. Martucci, and D. Sorokin, “The Goldstino brane, the constrained superfields and matter in \(\mathcal{N} = 1\) supergravity,” J. High Energy Phys. 1611, 109 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. Roček, “Linearizing the Volkov–Akulov model,” Phys. Rev. Lett. 41, 451 (1978).

    Article  ADS  Google Scholar 

  6. R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio, and R. Gatto, “Non-linear realization of supersymmetry algebra from supersymmetric constraint,” Phys. Lett. B 220, 569 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  7. Z. Komargodski and N. Seiberg, “From linear SUSY to constrained superfields,” J. High Energy Phys. 0909, 066 (2009).

  8. S. M. Kuzenko and S. J. Tyler, “Complex linear superfield as a model for Goldstino,” J. High Energy Phys. 1104, 057 (2011).

  9. S. M. Kuzenko and S. J. Tyler, “Relating the Komargodski-Seiberg and Akulov–Volkov actions: Exact nonlinear field redefinition,” Phys. Lett. B 698, 319 (2011); S. M. Kuzenko and S. J. Tyler, “On the Goldstino actions and their symmetries,” J. High Energy Phys. 1105, 055 (2011).

  10. S. Samuel and J. Wess, “A superfield formulation of the non-linear realization of supersymmetry and its coupling to supergravity,” Nucl. Phys. B 221, 153 (1983).

    Article  ADS  Google Scholar 

  11. N. Cribiori, G. Dall’Agata, and F. Farakos, “Interactions of N Goldstini in superspace,” Phys. Rev. D 94, 065019 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. E. I. Buchbinder and S. M. Kuzenko, “Three-form multiplet and supersymmetry breaking,” J. High Energy Phys. 1709, 089 (2017).

  13. D. V. Volkov and V. A. Soroka, “Higgs effect for Goldstone particles with spin 1/2,” JETP Lett. 18, 312 (1973).

    ADS  Google Scholar 

  14. S. Deser and B. Zumino, “Broken supersymmetry and supergravity,” Phys. Rev. Lett. 38, 1433 (1977).

    Article  ADS  Google Scholar 

  15. U. Lindström and M. Roček, “Constrained local superfields,” Phys. Rev. D 19, 2300 (1979).

    Article  ADS  Google Scholar 

  16. E. A. Bergshoeff, D. Z. Freedman, R. Kallosh, and A. van Proeyen, “Pure de Sitter supergravity,” Phys. Rev. D 92, 085040 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Hasegawa and Y. Yamada, “Component action of nilpotent multiplet coupled to matter in 4 dimensional \(\mathcal{N} = 1\) supergravity,” J. High Energy Phys. 1510, 106 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. M. Kuzenko, I. N. McArthur, G. Tartaglino-Mazzucchelli, “Goldstino superfields in N = 2 supergravity,” J. High Energy Phys. 1705, 061 (2017).

  19. S. M. Kuzenko and G. Tartaglino-Mazzucchelli, “New nilpotent \(\mathcal{N} = 2\) superfields,” Phys. Rev. D 97, 026003 (2018); arXiv:1707.07390 [hep-th].

  20. I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity, or a Walk through Superspace (IOP, Bristol, 1995), Revised Edition 1998.

  21. S. M. Kuzenko, “Complex linear Goldstino superfield and supergravity,” J. High Energy Phys. 1510, 006 (2015).

  22. I. Bandos, L. Martucci, D. Sorokin, and M. Tonin, “Brane induced supersymmetry breaking and de Sitter supergravity,” J. High Energy Phys. 1602, 080 (2016).

  23. E. Dudas, S. Ferrara, A. Kehagias, and A. Sagnotti, “Properties of nilpotent supergravity,” J. High Energy Phys. 1509, 217 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S. Cecotti, S. Ferrara, M. Porrati, and S. Sabharwal, “New minimal higher derivative supergravity coupled to matter,” Nucl. Phys. B 306, 160 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Ferrara, A. Kehagias, and M. Porrati, “\({{\mathcal{R}}^{2}}\) supergravity,” J. High Energy Phys. 1508, 001 (2015).

  26. R. Grimm, M. Sohnius, and J. Wess, “Extended supersymmetry and gauge theories,” Nucl. Phys. B 133, 275 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  27. P. S. Howe, “Supergravity in superspace,” Nucl. Phys. B 199, 309 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. M. Kuzenko, U. Lindström, M. Roček, and G. Tartaglino-Mazzucchelli, “On conformal supergravity and projective superspace,” J. High Energy Phys. 0908, 023 (2009).

  29. D. Butter and S. M. Kuzenko, “New higher-derivative couplings in 4D N = 2 supergravity,” J. High Energy Phys. 1103, 047 (2011).

  30. S. M. Kuzenko, “Super-Weyl anomalies in N = 2 supergravity and (non)local effective actions,” J. High Energy Phys. 1310, 151 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S. M. Kuzenko and G. Tartaglino-Mazzucchelli, “Nilpotent chiral superfield in N = 2 supergravity and partial rigid supersymmetry breaking,” J. High Energy Phys. 1603, 092 (2016).

  32. B. de Wit, R. Philippe, and A. van Proeyen, “The improved tensor multiplet in N = 2 supergravity,” Nucl. Phys. B 219, 143 (1983).

    Article  ADS  Google Scholar 

  33. I. Antoniadis, H. Partouche, and T. R. Taylor, “Spontaneous breaking of N = 2 global supersymmetry,” Phys. Lett. B 372, 83 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. E. A. Ivanov and B. M. Zupnik, “Modified N = 2 supersymmetry and Fayet-Iliopoulos terms,” Phys. At. Nucl. 62, 1043 (1999).

    Google Scholar 

  35. D. Butter, G. Inverso, and I. Lodato, “Rigid 4D \(\mathcal{N} = 2\) supersymmetric backgrounds and actions,” J. High Energy Phys. 1509, 088 (2015).

  36. S. M. Kuzenko, “Maximally supersymmetric solutions of \({{R}^{2}}\) supergravity,” Phys. Rev. D 94, 065014 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  37. C. R. Nappi and E. Witten, “A WZW model based on a non-semisimple group,” Phys. Rev. Lett. 71, 3751 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. J. Bagger and A. Galperin, “A new Goldstone multiplet for partially broken supersymmetry,” Phys. Rev. D 55, 1091 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Roček and A. A. Tseytlin, “Partial breaking of global D = 4 supersymmetry, constrained superfields, and 3-brane actions,” Phys. Rev. D 59, 106001 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Dudas, S. Ferrara, and A. Sagnotti, “A superfield constraint for \(\mathcal{N} = 2 \to \mathcal{N}\) = 0 breaking,” J. High Energy Phys. 1708, 109 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Ian McArthur and Gabriele Tartaglino-Mazzucchelli for collaboration on [17, 18] and comments on the manuscript. I thanks the organisers of the Workshop SQS’2017 for their warm hospitality in Dubna. The research presented in this work is supported in part by the Australian Research Council, project no. DP160103633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Kuzenko.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzenko, S.M. Goldstino Superfields in Supergravity. Phys. Part. Nuclei 49, 841–846 (2018). https://doi.org/10.1134/S106377961805026X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377961805026X

Keywords

Navigation