Skip to main content
Log in

Non-Perturbative Superpotentials and Discrete Torsion

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We discuss the non-perturbative superpotential in \({{E}_{8}} \times {{E}_{8}}\) heterotic string theory on a non-simply connected Calabi–Yau manifold X, as well as on its simply connected covering space \(\tilde {X}.\) The superpotential is induced by the string wrapping holomorphic, isolated, genus zero curves. We show, in a specific example, that the superpotential is non-zero both on \(\tilde {X}\) and on X avoiding the no-go residue theorem of Beasley and Witten. On the non-simply connected manifold X, we explicitly compute the leading contribution to the superpotential from all holomorphic, isolated, genus zero curves with minimal area. The reason for the non-vanishing of the superpotental on X is that the second homology class contains a finite part called discrete torsion. As a result, the curves with the same area are distributed among different torsion classes and their contributions do not cancel each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As usual, we split the six-dimensional vector index along \(X\) into its holomorphic and anti-holomorphic parts.

  2. The results of Beasley and Witten are also expected to be valid for complete intersections in toric spaces.

  3. For simplicity, we will work for a fixed complex structure which makes the Pfaffians to be the only non-trivial one-loop determinants.

REFERENCES

  1. V. Bouchard and R. Donagi, “An \(SU(5)\) heterotic Standard Model,” Phys. Lett. B 633, 783–791 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. V. Braun, Y. H. He, B. A. Ovrut, and T. Pantev, “A Standard Model from the \(E(8) \times E(8)\) heterotic superstring,” JHEP 0506, 039 (2005).

  3. V. Braun, Y. H. He, B. A. Ovrut, and T. Pantev, “The exact MSSM spectrum from string theory,” JHEP 0605, 043 (2006).

  4. L. B. Anderson, J. Gray, Y.-H. He, and A. Lukas, “Exploring positive monad bundles and a new heterotic Standard Model,” JHEP 1002, 054 (2010).

  5. V. Braun, P. Candelas, R. Davies, and R. Donagi, “The MSSM spectrum from \((0,2)\)-deformations of the heterotic standard embedding,” JHEP 1205, 127 (2012).

    Article  ADS  MATH  Google Scholar 

  6. L. B. Anderson, J. Gray, A. Lukas, and E. Palti, “Heterotic line bundle standard models,” JHEP 1206, 113 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  7. E. I. Buchbinder, A. Constantin, and A. Lukas, “A heterotic Standard Model with \(B - L\) symmetry and a stable proton,” JHEP 1406, 100 (2014).

    Article  ADS  MATH  Google Scholar 

  8. E. I. Buchbinder, A. Constantin, and A. Lukas, “Non-generic couplings in supersymmetric standard models,” Phys. Lett. B 748, 251 (2015).

    Article  ADS  MATH  Google Scholar 

  9. M. Dine, N. Seiberg, X. G. Wen, and E. Witten, “Nonperturbative effects on the string world sheet,” Nucl. Phys. B 278, 769 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Dine, N. Seiberg, X. G. Wen, and E. Witten, “Nonperturbative effects on the string world sheet. 2,” Nucl. Phys. B 289, 319 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Witten, “Worldsheet corrections via D instantons,” JHEP 0002, 030 (2000).

  12. E. I. Buchbinder, R. Donagi, and B. A. Ovrut, “Superpotentials for vector bundle moduli,” Nucl. Phys. B 653, 400 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. E. I. Buchbinder, R. Donagi, and B. A. Ovrut, “Vector bundle moduli superpotentials in heterotic superstrings and M theory,” JHEP 0207, 066 (2002).

  14. C. Beasley and E. Witten, “Residues and world sheet instantons,” JHEP 0310, 065 (2003).

  15. P. S. Aspinwall and D. R. Morrison, “Chiral rings do not suffice: \(N = (2,2)\) theories with nonzero fundamental group,” Phys. Lett. B 334, 79 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  16. E. I. Buchbinder and B. A. Ovrut, “Non-vanishing superpotentials in heterotic string theory and discrete torsion,” JHEP 1701, 038 (2017).

  17. V. Braun, M. Kreuzer, B. A. Ovrut, and E. Scheidegger, “Worldsheet instantons and torsion curves, part A: Direct computation,” JHEP 0710, 022 (2007).

Download references

ACKNOWLEDGMENTS

This work was supported by the ARC Future Fellowship FT120100466. The author would like to thank B. A. Ovrut for collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Buchbinder.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchbinder, E.I. Non-Perturbative Superpotentials and Discrete Torsion. Phys. Part. Nuclei 49, 835–840 (2018). https://doi.org/10.1134/S1063779618050088

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618050088

Keywords

Navigation