Skip to main content
Log in

Price’s Theorem in Gauge/Gravity Duality

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We discuss the Price’s theorem in the context of newly established exact solutions of static and non-static distorted black holes. Some numerics are given in “pro et contra” of their consideration in problems of astrophysics and Gauge/Gravity duality. Our analysis leads to a remarkable quantitative agreement between the relaxation time of AdS small black holes and lifetime of the Quark–Gluon plasma that gives another evidence to apply black hole physics to the description of strongly coupled relativistic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the rigorous mathematical proof of the “no-hair” theorem is still missing. But would it be regained it were dealt with solely mathematical black holes.

  2. Eqs. (2) do not take into account (small) deviations in the imaginary part of the l-wave frequencies. These deviations are classified by a positive number n [25] (the overtone number) and are sharply indicated in numerics.

  3. There are many pitfalls on this way. In practice, the observation of the gravitational wave flow requires a good intensity of the signal first; and second, its frequency has to fall within the bandwidth of the gravitational waves interferometers (the ground based A-LIGO or the planning space based eLISA). The bandwidth of the planning eLISA interferometer (see [30] for details in this respect) is well to catch the oscillations from the SMBH Sgr A* in the centre of our Galaxy with mass \(M \sim 3.7 \times {{10}^{6}}{{M}_{ \odot }}.\) (The oscillations frequency ν in [30] is related to our ω in (3) as \(\nu = {\omega \mathord{\left/ {\vphantom {\omega {2\pi }}} \right. \kern-0em} {2\pi }}.\)) But one should have in mind the constant gravitational wave’s flow (a gravitational “noise”) from the Sgr A* due to the BH accretion disk, intensity of which is larger than that of the BH horizon rearrangement. Independent data from another type detector such as, for example, the Event Horizon Telescope, may improve the situation and can be used as a cross-check.

  4. The early discussion on the role of the small BHs in the AdS/CFT can be found in [34].

  5. The horizon location of the AdS-Schwarzschild BH is determined by \({{r}_{ + }} = \max \{ r,f(r) = {{(\kappa r)}^{2}} - {{2M} \mathord{\left/ {\vphantom {{2M} r}} \right. \kern-0em} r} + 1 = 0\} \) that, on account of the small BH condition \({{(\kappa {{r}_{ + }})}^{2}} \ll 1\) with the inverse characteristic length of the AdS4 space κ, becomes almost the same as for the Minkowski neutral BH.

REFERENCES

  1. S. A. Hughes, “Trust but verify: The Case for astrophysical black holes,” eConf. C 0507252, L006 (2005), arXiv:hep-ph/0511217.

  2. The Galactic Black Holes, Ed. by H. Falcke and F. W. Hehl, IOP Bristol and Philadelphia, 2003.

    Google Scholar 

  3. A. Fabbri and J. Navarro-Salas, Modelling Black Hole Evaporation (Imperial Colledge Press, London, 2005).

    Book  MATH  Google Scholar 

  4. W. G. Unruh and R. M. Wald, “Information loss,” Rep. Prog. Phys. 80, 092002 (2017).

    Article  ADS  Google Scholar 

  5. F. Haardt et al., Astrophysical Black Holes, Lecture Notes in Physics, Vol. 905, Springer-Verlag, 2016.

    Book  Google Scholar 

  6. T. Johannsen, Sgr A* and General Relativity, arXiv:1512.03818[astro-ph.GA].

  7. H. Stephani, D. Kramer, M. MacCallum, C. Honselaers, and E. Herlt, Exact Solutions of Einstein Field Equations (Cambridge University Press, 2003).

    Book  MATH  Google Scholar 

  8. J. B. Griffiths and J. Podolsky, Exact Space-Times in Einstein’s General Relativity (Cambridge University Press, 2012).

    MATH  Google Scholar 

  9. N. Gürlebeck, “No-hair theorem for Black Holes in astrophysical environments,” Phys. Rev. Lett. 114, 151102 (2015).

    Article  ADS  Google Scholar 

  10. R. H. Price, “Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations,” Phys. Rev. D 5, 2419 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  11. R. H. Price, “Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields,” Phys. Rev. D 5, 2439 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  12. W. Israel, “Event Horizons in static vacuum space-times,” Phys. Rev. 164, 1776 (1967).

    Article  ADS  Google Scholar 

  13. R. Geroch and J. B. Hartle, “Distorted black holes,” J. Math. Phys. 23, 680 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Weyl, “Zur Gravitationstheorie,” Ann. Phys. 54, 117 (1917).

    Article  MATH  Google Scholar 

  15. K. S. Thorne, “Nonspherical gravitational collapse: Does it produce Black Holes?,” Comments Astrophys. Space Phys. 2, 191 (1970).

    ADS  Google Scholar 

  16. K. S. Thorne, “Nonspherical gravitational collapse: A short review,” in Magic Without Magic, Ed. by J. R. Klauder (San Francisco, 1972), pp. 231–258.

    Google Scholar 

  17. M. Ammon and J. Erdmenger, Gauge/Gravity Duality: Foundations and Applications (Cambridge University Press, 2015).

    Book  MATH  Google Scholar 

  18. M. Natsuume, “AdS/CFT duality user guide,” in Lecture Notes in Physics, Vol. 903 (Springer, Japan, 2015).

  19. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions (Cambridge University Press, 2014).

    Book  MATH  Google Scholar 

  20. T. Moskalets and A. Nurmagambetov, “Liouville mode in gauge/gravity duality,” Eur. Phys. J. C 75, 551 (2015).

    Article  ADS  Google Scholar 

  21. T. M. Moskalets and A. J. Nurmagambetov, “Non-uniform horizons in gauge/gravity duality,” Phys. At. Nucl. 79, 1497 (2016).

    Article  Google Scholar 

  22. T. Moskalets and A. Nurmagambetov, Absorption cross-sections of small quasi-spherical black holes: The massless scalar case, arXiv:1607.08830[gr-qc].

  23. T. M. Moskalets and A. J. Nurmagambetov, “Static and non-static black holes with the Liouville mode,” Phys. Part. Nucl. Lett. 14, 365 (2017).

    Article  Google Scholar 

  24. J. W.York, Jr., “Dynamical origin of Black Hole radiance,” Phys. Rev. D 28, 2929 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S. Chandrasekhar and S. L. Detweiler, “The quasi-normal modes of the Schwarzschild black hole,” Proc. R. Soc. London, Ser. A 344, 441 (1975).

    Article  ADS  Google Scholar 

  26. H. T. Cho, A. S. Cornell, J. Doukas, T. R. Huang, and W. Naylor, “A new approach to Black Hole quasinormal modes: A review of the asymptotic iteration method,” Adv. Math. Phys. 2012, 281705 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Iyer and C. M. Will, “Black Hole normal modes: A WKB approach. 1. Foundations and application of a higher order WKB analysis of potential barrier scattering,” Phys. Rev. D 35, 3621 (1987).

    Article  ADS  Google Scholar 

  28. S. Iyer, “Black Hole normal modes: A WKB approach. 2. Schwarzschild Black Holes,” Phys. Rev. D 35, 3632 (1987).

    Article  ADS  Google Scholar 

  29. G. Siopsis, “Analytic calculation of quasi-normal modes,” in Lecture in Notes Physics, Vol. 769 (Springer, 2009), p. 471.

  30. V. Ferrari and L. Gualtieri, “Quasi-normal modes and gravitational wave astronomy,” Gen. Rel. Grav. 40, 945 (2008).

    Article  ADS  MATH  Google Scholar 

  31. J. Dexter and E. Agol, “Quasar accretion disks are strongly inhomogeneous,” Astrophys. J. 727, L24 (2011).

    Article  ADS  Google Scholar 

  32. J. Dexter and E. Quataert, “Inhomogeneous accretion discs and the soft states of black hole X-ray binaries,” Mon. Not. R. Astron. Soc. 426, 71 (2012).

    Article  ADS  Google Scholar 

  33. A. Ricarte and J. Dexter, “The Event Horizon Telescope: Exploring strong gravity and accretion physics,” Mon. Not. R. Astron. Soc. 446, 1973 (2015).

    Article  ADS  Google Scholar 

  34. G. T. Horowitz and V. E. Hubeny, “Quasinormal modes of AdS black holes and the approach to thermal equilibrium,” Phys. Rev. D 62, 024027 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  35. K. D. Kokkotas and B. G. Schmidt, “Quasinormal modes of stars and black holes,” Living Rev. Rel. 2, 2 (1999).

    Article  MATH  Google Scholar 

  36. K. S. Thorne, “Multipole expansions of gravitational radiation,” Rev. Mod. Phys. 52, 299 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  37. V. Cardoso, R. Konoplya, and J. P. S. Lemos, “Quasinormal frequencies of Schwarzschild black holes in anti-de Sitter space-times: A complete study on the asymptotic behavior,” Phys. Rev. D 68, 044024 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. T. A. Moore, A General Relativity Workbook (Univ. Science Books, 2012).

    Google Scholar 

  39. V. Khachatryan et al. (CMS Collab.), “Evidence for collective multiparticle correlations in \(p\)-Pb collisions,” Phys. Rev. Lett. 115, 012301 (2015).

    Article  ADS  Google Scholar 

  40. M. Martin-Neira et al., “Space-borne radio telescope to image the supermassive black hole at our galactic centre,” in Proceedings of the 38th ESA Antenna Workshop, ESA/ESTEC (Netherlands, 2017).

Download references

ACKNOWLEDGMENTS

AJN thanks to the Organisers and participants of the SQS’17 meeting for nice atmosphere during the event. Work supported in part by Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Arslanaliev or A. J. Nurmagambetov.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslanaliev, A.M., Nurmagambetov, A.J. Price’s Theorem in Gauge/Gravity Duality. Phys. Part. Nuclei 49, 879–883 (2018). https://doi.org/10.1134/S1063779618050039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618050039

Keywords

Navigation