Skip to main content
Log in

Limits of Majorana neutrino mass from combined analysis of data from 76Ge and 136Xe neutrinoless double beta decay experiments

  • The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–Ferbuary 8, 2015, Valday, Russia
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We present effective Majorana neutrino mass limits <m ββ> obtained from the joint analysis of the recently published results of 76Ge and 136Xe neutrinoless double beta decay (0νββ) experiments, which was carried out by using the Bayesian calculations. Nuclear matrix elements (NMEs) used for the analysis are taken from the works, in which NMEs of 76Ge and 136Xe were simultaneously calculated. This reduced systematic errors connected with NME calculation techniques. The new effective Majorana neutrino mass limits <m ββ> less than [85.4–197.0] meV are much closer to the inverse neutrino mass hierarchy region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Fukuda et al. (SK Collab.), “Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande-I data”, Phys. Lett. B 539, 179–187 (2002).

    Article  ADS  Google Scholar 

  2. Q. R. Ahmad et al. (SNO Collab.), “Measurement of the rate of interactions produced by Solar neutrinos at the Sudbury Neutrino Observatory”, Phys. Rev. Lett. 87, 071301-1–071301-6 (2001).

  3. K. Educhi et al. (KamLAND Collab.), “First results from Kam- LAND: Evidence for reactor antineutrino disappearance”, Phys. Rev. Lett. 90, 021802-1–021802-6 (2003).

  4. V. N. Gavrin et al. (SAGE Collab.), “Measurement of the solar neutrino capture rate in SAGE”, Nucl. Phys. B. (Proc. Suppl.) 118, 39–51 (2003).

    Article  ADS  Google Scholar 

  5. J. N. Abdurashitov et al. (SAGE Collab.), “Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22-year Solar cycle”, J. Exp. Theor. Phys. 95, 181–193 (2002)

    Article  ADS  Google Scholar 

  6. W. Hampel et al. (GALLEX Collab.), “GALLEX solar neutrino obser-136Xe 76Ge 100Mo 130Te mßß 76Ge 136Xe 130Te 100Mo 76Ge 136Xe mßß Sm? < vations: Results for GALLEX IV”, Phys. Lett. B 447, 127–133 (1999)

    Article  ADS  Google Scholar 

  7. E. Bellotti et al. (GALLEX Collab.), “First results from GNO”, Nucl. Phys. B. (Proc. Suppl.) 91, 44–49 (2001).

    Article  ADS  Google Scholar 

  8. W. M. Yao et al. (PDG Collab.), “Review of Particle Physics,” J. Phys. G 33, 1–1232 (2006)

    Article  ADS  Google Scholar 

  9. V. N. Aseev, A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, N. A. Lihovid, V. M. Lobashev, A. A. Nozik, V.S.Pantuev, V. I. Parfenov, A. K. Skasyrskaya, F. V. Tkachov, and S. V. Zadorozhny, “Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment”, Phys. Atom. Nucl. 75, 464–478 (2012).

    Article  ADS  Google Scholar 

  10. P. A. R. Ade et al. (Planck Collab.), “Planck 2015 results. XIII Cosmological parameters”. arXiv:1502.01589[astro-ph.CO].

  11. C. L. Bennet et al. (WMAP Collab.), “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results”, AstroPhys. J. Suppl. Ser. 208, 20–74 (2013).

    Article  ADS  Google Scholar 

  12. L. Anderson et al. (SDSS-III Collab.), “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample”, Mon. Not. R. Astron. Soc. 427, 3435–3467 (2012).

    Article  ADS  Google Scholar 

  13. G. L. Fogli, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, A. M. Rotunno, P. Serra, J. Silk, and A. Slosar, “Observables sensitive to absolute neutrino masses. II”, Phys. Rev. D 78, 033010-1–033010-5 (2008).

    Article  ADS  Google Scholar 

  14. M. Mitra, G. Senjanovich, and F. Vissani, “Heavy sterile neutrinos and neutrinoless double beta decay”. arXiv:1205.3867 [hep-ph].

  15. S. M. Bilenky and C. Giunti, “Neutrinoless doublebeta decay: A probe of physics beyond the Standard Model”. arXiv:1411.4791[hep-ph].

  16. P. S. Bhupal Dev, S. Goswami, M. Mitra, and W. Rodejohann, “Constraining Neutrino Mass from Neutrinoless Double beta Decay”, arXiv:1305.0056[hep-ph].

  17. M. A. Agostini et al. (GERDA Collab.), “Results on neutrinoless double decay of 76Ge from phase I of the GERDA experiment”, Phys. Rev. Lett. 111, 122503- 1–122503-6 (2013).

    Article  ADS  Google Scholar 

  18. A. Gando et al. (KamLAND-Zen Collab.), “Limit on neutrinoless decay of 136Xe from first phase of Kam- LAND-Zen and comparison with the positive claim in 76Ge”, Phys. Rev. Lett. 110, 062502-1–062502-5 (2013).

    Article  ADS  Google Scholar 

  19. M. A. Agostini et al. (GERDA Collab.), “The background in the neutrinoless double beta decay experiment GERDA”, Eur. Phys. J. C 74, 2764-1–2764-25 (2014)

  20. M. A. Agostini et al. (GERDA Collab.), “The GERDA experiment for the search of 0 decay in 76Ge”, Eur. Phys. J. C 73, 2330-1–2330-29 (2013).

    Article  ADS  Google Scholar 

  21. M. A. Agostini et al. (GERDA Collab.), “Pulse shape discrimination for GERDA Phase I data”, Eur. Phys. J. C 73, 2583-1–2583-17 (2013).

    Article  ADS  Google Scholar 

  22. H. V. Klapdor-Kleingrothaus et al. (HdM Collab.), “Latest results from the Heidelberg-Moscow double beta decay experiment”, Eur. Phys. J. A 12, 147–154 (2001).

    Article  ADS  Google Scholar 

  23. C. E. Aalseth et al. (IGEX Collab.), “The IGEX Ge-76 neutrinoless double-beta decay experiment: Prospects for next generation experiments”, Phys. Rev. D 65, 092007-1–092007-6 (2002).

    Article  ADS  Google Scholar 

  24. J. B. Albert et al. (EXO-200 Collab.), “Search for Majorana neutrinos with the first two years of EXO- 200 data”; arXiv:1402.695 [nucl-exp].

  25. A. Asakura et al. (KamLAND-Zen Collab.), “Results from KamLAND-Zen”; arXiv:1409.0077v1 [physics. ins-det].

  26. A. Caldwell and K. Kroninger, “Signal discovery in sparse spectra: A Bayesian analysis”, Phys. Rev. D 74, 092003-1–092003-7 (2006).

    Article  ADS  Google Scholar 

  27. F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, “0 and 2 nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration”, Phys. Rev. C 87, 045501-1–045501-9 (2013).

    Article  ADS  Google Scholar 

  28. A. Meroni, S. T. Petkov, and F. Šimkovic, “Multiple CP non-conserving mechanisms of (decay and nuclei with largely different nuclear matrix elements”, J. High Energy Phys. 2, 025-1–025-27 (2013)

    Article  ADS  Google Scholar 

  29. J. Suhonen and O. Civitarese, “Effects of orbital occupancies and spin-orbit partners on 0-decay rates”, Nucl. Phys. A 847, 207–232 (2010).

    Article  ADS  Google Scholar 

  30. T. A. Rodriguez and G. Martinez-Pinedo, “Energy density functional study of nuclear matrix elements for neutrinoless decay”, Phys. Rev. Lett. 105, 252503- 1–252503-4 (2010)

    Article  ADS  Google Scholar 

  31. M. T. Mustonen and J. Engel, “Large-Scale Calculations of the Double-Beta Decay of 76Ge, 130Te, 136Xe, and 150Nd in the Deformed Self- Consistent Skyrme Quasiparticle Random-Phase Approximation”; arXiv:1301.6997[nucl-th].

  32. A. Smolnikov and P. Grabmayr, “Conversion of experimental half life time to effective electron neutrino mass in 0 decay”, Phys. Rev. C 81, 028502-1–028502-4 (2010).

    Article  ADS  Google Scholar 

  33. J. Kotila and F. Iachello, “Phase-space factors for double beta decay”, Phys. Rev. C 85, 034316-1–034316-13 (2012).

    Article  ADS  Google Scholar 

  34. R. Arnold et al. (NEMO-3 Collab.), “Search for neutrinoless double beta decay with the NEMO-3 detector”, Phys. Rev. D 89, 111101-1–111101-6 (2014).

    Article  ADS  Google Scholar 

  35. E. Andreotti et al. (CUORE Collab.), “130Te neutrinoless double beta decay with CUORICINO”, Astroparticle Phys. 34, 822–831 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Klimenko.

Additional information

Talk at The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–8, 2015, Valday, Russia.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, A.A., Rumyantseva, N.S. Limits of Majorana neutrino mass from combined analysis of data from 76Ge and 136Xe neutrinoless double beta decay experiments. Phys. Part. Nuclei 48, 21–26 (2017). https://doi.org/10.1134/S1063779616060125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616060125

Navigation