Skip to main content
Log in

Gauge fields, nonlinear realizations, supersymmetry

  • The issue is devoted to the 60th anniversary of the Joint Institute for Nuclear Research
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

This is a brief survey of the all-years research activity in the Sector “Supersymmetry” (the former Markov Group) at the Bogoliubov Laboratory of Theoretical Physics. The focus is on the issues related to gauge fields, spontaneously broken symmetries in the nonlinear realizations approach, and diverse aspects of supersymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-N. Yang and R. L. Mills, “Conservation of isotopic spin and isotopic gauge invariance,” Phys. Rev. 96, 191–195 (1954).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. S. R. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological Lagrangians, 1,” Phys. Rev. 177, 2239–2247 (1969); C. G. Callan, S. R. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological Lagrangians, 2,” Phys. Rev. 177, 2247–2250 (1969).

    Article  ADS  Google Scholar 

  3. D. V. Volkov, “Phenomenological Lagrangians,” Fiz. Elem. Chastits At. Yadra 4, 3–41 (1973).

    MathSciNet  Google Scholar 

  4. V. I. Ogievetsky, in Proceedings of X Winter School of Theoretical Physics in Karpach (Wroclaw, 1974), Vol. 1, pp. 117–132.

    Google Scholar 

  5. Yu. A. Golfand and E. P. Lichtman, “Extension of the algebra of Poincaré group generators and breakdown of P-invariance,” JETP Lett. 13, 323–326 (1971).

    ADS  Google Scholar 

  6. D. V. Volkov and V. P. Akulov, “On a possible universal interaction of the neutrino,” JETP Lett. 16, 438–440 (1972).

    ADS  Google Scholar 

  7. J. Wess and B. Zumino, “Supergauge transformations in four dimensions,” Nucl. Phys. B 70, 39–50 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  8. E. A. Ivanov, “Supersymmetry in superspace: 35 years of the research activity in LTP,” Phys. Part. Nucl. 40, 291–306 (2009); Supersymmetry at BLTP: How It Started and Where We Are, arXiv:hep-th/0609176.

    Article  Google Scholar 

  9. V. I. Ogievetsky and I. V. Polubarinov, “On a sense of gauge invariance,” Nuovo Cim. 23, 173 (1962); V. I. Ogievetskij and I. V. Polubarinov, “Interacting fields of definite spin,” J. Exp. Theor. Phys. 45, 237–245 (1963).

    Article  MATH  Google Scholar 

  10. V. I. Ogievetsky and I. V. Polubarinov, “Theories of interacting fields with spin 1,” Nucl. Phys. 76, 677 (1966); V. I. Ogievetsky and I. V. Polubarinov, “Interacting spin 1 fields and symmetry properties,” J. Exp. Theor. Phys. 45, 966–977 (1963); “Minimal interactions between the fields of spin 0, 1/2 and 1,” J. Exp. Theor. Phys. 46, 1048–1055 (1964).

    Article  Google Scholar 

  11. V. I. Ogievetsky and I. V. Polubarinov, “Interacting field spin and symmetries,” in Proceedings of International School on Theoretical Physics (Dubna, 1964), Vol. 2.

    Google Scholar 

  12. V. I. Ogievetsky and I. V. Polubarinov, “Interacting field of spin 2 and the Einstein equations,” Ann. Phys. (N. Y.) 35, 167 (1965).

    Article  ADS  Google Scholar 

  13. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Cambridge University Press, Cambridge, 2001).

    Book  MATH  Google Scholar 

  14. V. I. Ogievetsky, Private communication.

  15. I. V. Polubarinov, “Equations of quantum electrodynamics,” Phys. Part. Nucl. 34, 377–410 (2003).

    Google Scholar 

  16. V. I. Ogievetsky and I. V. Polubarinov, “The notoph and its possible interactions,” J. Nucl. At. Phys. 4, 156–161 (1967).

    Google Scholar 

  17. M. Kalb and P. Ramond, “Classical direct interstring action,” Phys. Rev. D 9, 2273–2284 (1974).

    Article  ADS  Google Scholar 

  18. V. I. Ogievetsky and I. V. Polubarinov, “Spinors in gravitation theory,” J. Exp. Theor. Phys. 21, 1093–1100 (1965).

    ADS  MathSciNet  Google Scholar 

  19. A. B. Borisov and V. I. Ogievetsky, “Theory of dynamical affine and conformal symmetries as gravity theory,” Theor. Math. Phys. 21, 1179–1188 (1975).

    Article  Google Scholar 

  20. B. M. Zupnik and V. I. Ogievetsky, “Investigation of non-linear realizations of chiral groups by the method of generating functions,” Teor. Mat. Fiz. 1, 19–33 (1969).

    Article  Google Scholar 

  21. V. I. Ogievetsky and B. M. Zupnik, “On the chiral SU(2) × SU(2) dynamics for A1, ρ and π mesons,” Nucl. Phys. B 24, 612–622 (1970).

    Article  ADS  Google Scholar 

  22. E. Ivanov and E. Truhlik, “Hard pions and axial meson exchange currents in nuclear physics,” Nucl. Phys. A 316, 437–450 (1979); “Hard pions and axial meson exchange current effects in negative muon capture in deuterium,” Nucl. Phys. A 316, 451–460 (1979).

    Article  ADS  Google Scholar 

  23. V. I. Ogievetsky, “Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups,” Lett. Nuovo Cimento 8, 988–990 (1973).

    Article  MathSciNet  Google Scholar 

  24. H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai, and H. Samtleben, “Supersymmetric E7(7) exceptional field theory,” J. High Energy Phys. 1409, 044 (2014); arXiv:1406.3235[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E. A. Ivanov and V. I. Ogievetsky, “Gauge theories as theories of spontaneous breakdown,” Lett. Math. Phys. 1, 309–313 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  26. E. A. Ivanov, “On the geometric meaning of the N = 1 Yang–Mills prepotential,” Phys. Lett. B 117, 59–63 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  27. E. A. Ivanov and J. Niederle, “N = 1 supergravity as a nonlinear realization,” Phys. Rev. D 45, 4545–4554 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  28. E. A. Ivanov and V. I. Ogievetsky, “The inverse Higgs phenomenon in nonlinear realizations,” Teor. Mat. Fiz. 25, 164–177 (1975).

    Article  MathSciNet  Google Scholar 

  29. E. Ivanov, “Diverse PBGS patterns and superbranes,” in Proceedings of 14th Max Born Symposium, Karpacz, Poland, 1999, pp. 206–217; arXiv:hep-th/0002204.

    Google Scholar 

  30. E. A. Ivanov, S. O. Krivonos, and V. M. Leviant, “Geometry of conformal mechanics,” J. Phys. A: Math. Gen. 22, 345–354 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J. Gomis, K. Kamimura, and J. M. Pons, “Non-linear realizations, goldstone bosons of broken Lorentz rotations and effective actions for p-branes,” Nucl. Phys. B 871, 420–451 (2013); arXiv:1205. 1385[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Bellucci, E. Ivanov, and S. Krivonos, “Superworld volume dynamics of superbranes from nonlinear realizations,” Phys. Lett. B 482, 233–240 (2000); arXiv:hep-th/0003273.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. E. A. Ivanov and S. O. Krivonos, “U(1)-supersymmetric extension of the Liouville equation,”,” Lett. Math. Phys. 7, 523–531 (1983); Lett. Math. Phys 8, 345E (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. E. A. Ivanov and S. O. Krivonos, “N = 4 super Liouville equation,” J. Phys. A: Math. Gen. 17, L671–L676 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. E. A. Ivanov, S. O. Krivonos, and V. M. Leviant, “Geometric superfield approach to superconformal mechanics,” J. Phys. A: Math. Gen. 22, 4201–4222 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S. Fedoruk, E. Ivanov, and J. Lukierski, “Galilean conformal mechanics from nonlinear realizations,” Phys. Rev. D 83, 085013 (2011); arXiv:1101. 1658[hep-th].

    Article  ADS  Google Scholar 

  37. E. A. Ivanov, “Yang–Mills theory in sigma model representation,” JETP Lett. 30, 422 (1979).

    ADS  Google Scholar 

  38. E. A. Ivanov and J. Niederle, “Gauge formulation of gravitation theories, 1: The Poincare, De Sitter and conformal cases,” Phys. Rev. D 25, 976–987 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  39. E. A. Ivanov and J. Niederle, “Gauge formulation of gravitation theories, 2: The special conformal case,” Phys. Rev. D 25, 988–994 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  40. K. S. Stelle and P. C. West, “Spontaneously broken de Sitter symmetry and the gravitational holonomy group,” Phys. Rev. D 21, 1466–1488 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Salam and J. Strathdee, “Supergauge transformations,” Nucl. Phys. B 76, 477–482 (1974); “On superfields and Fermi-Bose symmetry,” Phys. Rev. D 11, 1521–1535 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  42. S. Ferrara, B. Zumino, and J. Wess, “Supergauge multiplets and superfields,” Phys. Lett. B 51, 239–241 (1974).

    Article  ADS  Google Scholar 

  43. L. Mezincescu and V. I. Ogievetsky, Preprint JINRE2-8277 (Dubna, 1974).

    Google Scholar 

  44. F. A. Berezin, “The method of second quantization,” Pure Appl. Phys. 24, 1–228 (1966).

    Article  MathSciNet  Google Scholar 

  45. J. Wess and B. Zumino, “A Lagrangian model invariant under supergauge transformations,” Phys. Lett. B 49, 52–54 (1974).

    Article  ADS  Google Scholar 

  46. V. I. Ogievetsky and L. Mezincescu, “Symmetries between bosons and fermions and superfields,” Usp. Fiz. Nauk 117, 637–683 (1975).

    Article  Google Scholar 

  47. E. Sokatchev, “Projection operators and supplementary conditions for superfields with an arbitrary spin,” Nucl. Phys. B 99, 96–108 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  48. D. Z. Freedman, P. van Nieuwenhizen, and S. Ferrara, “Progress toward a theory of supergravity,” Phys. Rev. D 13, 3214–3218; S. Deser and B. Zumino, “Consistent supergravity,” Phys. Lett. B 62, 335–337 (1976).

  49. V. Ogievetsky and E. Sokatchev, “On vector superfield generated by supercurrent,” Nucl. Phys. B 124, 309–316 (1977).

    Article  ADS  Google Scholar 

  50. S. Ferrara and B. Zumino, “Transformation properties of the supercurrent,” Nucl. Phys. B 87, 207–220 (1975).

    Article  ADS  Google Scholar 

  51. V. Ogievetsky and E. Sokatchev, “Supercurrent,” J. Nucl. At. Phys. 28, 423 (1978).

    MathSciNet  Google Scholar 

  52. V. I. Ogievetsky and E. Sokatchev, “Superfield equations of motion,” J. Phys. A: Math. Gen. 10, 2021–2030 (1977).

    Article  ADS  Google Scholar 

  53. V. Ogievetsky and E. Sokatchev, “Structure of supergravity group,” Phys. Lett. B 79, 222–224 (1978).

    Article  ADS  Google Scholar 

  54. V. Ogievetsky and E. Sokatchev, “The gravitational axial superfield and the formalism of differential geometry,” J. Nucl. At. Phys. 31, 424 (1980).

    MathSciNet  Google Scholar 

  55. D. V. Volkov and V. A. Soroka, “Higgs effect for Goldstone particles with spin 1/2,” JETP Lett. 18, 312–314 (1973).

    ADS  MATH  Google Scholar 

  56. I. Bandos, L. Martucci, D. Sorokin, and M. Tonin, “Brane induced supersymmetry breaking and de Sitter supergravity,” J. High Energy Phys. 1602, 080 (2016); arXiv: 1511.03024 [hep-th].

    Article  ADS  Google Scholar 

  57. J. Wess and B. Zumino, “Superspace formulation of supergravity,” Phys. Lett. B 66, 361–364 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  58. J. Wess and B. Zumino, “Supergauge invariant extension of quantum electrodynamics,” Nucl. Phys. B 78, 1–13 (1974); S. Ferrara and B. Zumino, “Supergauge invariant Yang–Mills theories,” Nucl. Phys. B 79, 413–421 (1974); A. Salam and J. Strathdee, “Supersymmetry and nonabelian gauges,” Phys. Lett. B 51, 353–355 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  59. W. Siegel and S. J. Gates, “Superfield supergravity,” Nucl. Phys. B 147, 77–104 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. K. S. Stelle and P. C. West, “Minimal auxiliary fields for supergravity,” Phys. Lett. B 74, 330–332 (1978); S. Ferrara and P. van Nieuwenhuizen, “The auxiliary fields of supergravity,” Phys. Lett. B 74, 333–335 (1978).

    Article  ADS  Google Scholar 

  61. E. S. Fradkin and A. A. Tseytlin, “Conformal supergravity,” Phys. Rep. 119, 233–362 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. E. A. Ivanov and A. A. Kapustnikov, Preprint JINRE2-10765 (Dubna, 1977).

    Google Scholar 

  63. E. A. Ivanov and A. A. Kapustnikov, “General relationship between linear and nonlinear realizations of supersymmetry,” J. Phys. A: Math. Gen. 11, 2374–2384 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  64. E. A. Ivanov and A. A. Kapustnikov, “The nonlinear realization structure of models with spontaneously broken supersymmetry,” J. Phys. G: Nucl. Phys. 8, 167–191 (1982).

    Article  ADS  Google Scholar 

  65. I. Antoniadis, E. Dudas, and D. M. Ghilencea, “Goldstino and sgoldstino in microscopic models and the constrained superfields formalism,” Nucl. Phys. B 857, 65–84 (2012); arXiv:1110.5939[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Z. Komargodski and N. Seiberg, “From linear SUSY to constrained superfields,” J. High Energy Phys. 0909, 066 (2009); arXiv:0907.2441[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  67. S. Samuel and J. Wess, “A superfield formulation of the non-linear realization of supersymmetry and its coupling to supergravity,” Nucl. Phys. B 221, 153–177 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  68. E. A. Ivanov and A. A. Kapustnikov, “On a model independent description of spontaneously broken N = 1 supergravity in superspace,” Phys. Lett. B 143, 379–383 (1984); “Geometry of spontaneously broken local N = 1 supersymmetry in superspace,” Nucl. Phys. B 333, 439–470 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  69. I. Antoniadis, E. Dudas, S. Ferrara, and A. Sagnotti, “The Volkov–Akulov–Starobinsky supergravity,” Phys. Lett. B 733, 32–35 (2014); arXiv:1403.3269[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  70. M. Roček, “Linearizing the Volkov–Akulov model,” Phys. Rev. Lett. 41, 451–453 (1978); U. Lindstrüm and M. Roček, “Constrained local superfields,” Phys. Rev. D 19, 2300–2303 (1979).

    Article  ADS  Google Scholar 

  71. E. A. Ivanov and A. S. Sorin, “Superfield formulation of OSp(1, 4) supersymmetry,” J. Phys. A: Math. Gen. 13, 1159–1188 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  72. E. A. Ivanov and A. S. Sorin, “Wess-Zumino model as linear sigma model of spontaneously broken conformal and OSp(1, 4) supersymmetries,” J. Nucl. At. Phys. 30, 440 (1979).

    MathSciNet  Google Scholar 

  73. I. A. Bandos, E. Ivanov, J. Lukierski, and D. Sorokin, “On the superconformal flatness of AdS superspaces,” J. High Energy Phys. 0206, 040 (2002); arXiv:hepth/0205104.

    Article  ADS  MathSciNet  Google Scholar 

  74. S. J. Gates, K. S. Stelle, and P. C. West, “Algebraic origins of superspace constraints in supergravity,” Nucl. Phys. B 169, 347–364 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  75. D. Cassani, C. Klare, D. Martelli, A. Tomasiello, and A. Zaffaroni, “Supersymmetry in Lorentzian curved spaces and holography,” Commun. Math. Phys. 327, 577–602 (2014); arXiv:1207.2181[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. G. Festuccia and N. Seiberg, “Rigid supersymmetric theories in curved superspace,” J. High Energy Phys. 1106, 114 (2011); arXiv:1105.0689[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. R. Grimm, M. Sohnius, and J. Wess, “Extended supersymmetry and gauge theory,” Nucl. Phys. B 133, 275–284 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  78. L. Mezincescu, Preprint JINR-R2-12572 (Dubna, 1979).

    Google Scholar 

  79. K. S. Stelle, Preprint NSF-ITP-95-001 (Santa Barbara).

  80. A. Galperin, E. Ivanov, and V. Ogievetsky, “Grassmann analyticity and extended supersymmetry,” JETP Lett. 33, 168–172 (1981).

    ADS  Google Scholar 

  81. A. Galperin, E. Ivanov, and V. Ogievetsky, “Superfield anatomy of the Fayet-Sohnius multiplet,” Phys. At. Nucl. 46, 458–463 (1982).

    Google Scholar 

  82. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic superspace: a key to N = 2 supersymmetric theories,” JETP Lett. 40, 912–916 (1984); A. Galperin, E. Ivanov, S. Kalitzin, V. Ogivetsky, and E. Sokatchev, “Unconstrained N = 2 matter, Yang–Mills and supergravity theories in harmonic superspace,” Classical Quantum Gravity 1, 469–498 (1984); Classical Quantum Gravity 2, 127E (1985).

    ADS  Google Scholar 

  83. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs: Green functions,” Classical Quantum Gravity 2, 601–616 (1985); “Harmonic supergraphs: Feynman rules and examples,” Classical Quantum Gravity 2, 617–630 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. A. Karlhede, U. Lindström, and M. Roček, “Selfinteracting tensor multiplet in N = 2 superspace,” Phys. Lett. B 147, 297–300 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  85. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Hyperkahler metrics and harmonic superspace,” Commun. Math. Phys. 103, 515–526 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. L. Alvarez-Gaumé and D. Z. Freedman, “Ricci-flat Káhler manifolds and supersymmetry,” Phys. Lett. B 94, 171–173 (1980).

    Article  ADS  Google Scholar 

  87. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. Sokatchev, “Gauge field geometry from complex and harmonic analyticities. Hyperkahler case,” Ann. Phys. 185, 22–45 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  88. B. Zumino, “Supersymmetry and Káhler manifolds,” Phys. Lett. B 87, 203–206 (1979).

    Article  ADS  Google Scholar 

  89. A. Galperin, E. Ivanov, V. Ogievetsky, and P. K. Townsend, “Eguchi-Hanson type metrics from harmonic superspace,” Classical Quantum Gravity 3, 625–633 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. F. Delduc and E. Ivanov, “N = 4 mechanics of general (4, 4, 0) multiplets,” Nucl. Phys. B 855, 815–853 (2012); arXiv:1107. 1429[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. A. A. Rosly, “Super Yang–Mills constraints as integrability conditions,” in Proceedings of International Seminar “Theoretical-Group Methods in Physics,” Zvenigorod, November 1982 (Nauka, Moscow, 1983), Vol. 1, pp. 263–268.

    Google Scholar 

  92. B. M. Zupnik, “The action of the supersymmetric N = 2 gauge theory in harmonic superspace,” Phys. Lett. B 183, 175–176 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  93. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, Preprint JINR E2-85-363 (Dubna, 1985; Quantum Field Theory and Quantum Statistics, Ed. by I. Batalin, C. J. Isham, and G. Vilkovisky (Adam Hilger, Bristo, 1987), Vol. 2, pp. 233–248.

  94. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “N = 2 supergravity in superspace: different versions and matter couplings,” Classical Quantum Gravity 4, 1255–1265 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. A. Galperin, Nguen Anh Ky, and E. Sokatchev, “N = 2 supergravity in superspace: Solution to the constraints and the invariant action,” Classical Quantum Gravity 4, 1235–1254 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. J. Bagger and E. Witten, “Matter couplings in N = 2 supergravity,” Nucl. Phys. B 222, 1–10 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  97. A. Galperin, E. Ivanov, and O. Ogievetsky, “Harmonic space and quaternionic manifolds,” Ann. Phys. 230, 201–249 (1994); arXiv:hep-th/9212155.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. J. A. Bagger, A. S. Galperin, E. A. Ivanov, and V. I. Ogievetsky, “Gauging N = 2 σ models in harmonic superspace,” Nucl. Phys. B 303, 522 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  99. E. Ivanov and G. Valent, “Quaternionic metrics from harmonic superspace: Lagrangian approach and quotient construction,” Nucl. Phys. B 576, 543–577 (2000); arXiv:hep-th/0001165.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained off-shell N = 3 supersymmetric Yang–Mills theory,” Classical Quantum Gravity 2, 155–166 (1985); A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “N = 3 supersymmetric gauge theory,” Phys. Lett. B 151, 215–218 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. A. S. Galperin, E. A. Ivanov, and V. I. Ogievetsky, “Superspaces for N = 3 supersymmetry,” Phys. At. Nucl. 46, 543–556 (1987).

    MathSciNet  Google Scholar 

  102. P. S. Howe and P. C. West, “Operator product expansions in four-dimensional superconformal field theories,” Phys. Lett. B 389, 273–279 (1996); arXiv:hepth/9607060.

    Article  ADS  MathSciNet  Google Scholar 

  103. I. L. Buchbinder, E. I. Buchbinder, E. A. Ivanov, S. M. Kuzenko, and B. A. Ovrut, “Effective action of the N = 2 Maxwell multiplet in harmonic superspace,” Phys. Lett. B 412, 309–319 (1997); arXiv:hepth/9703147.

    Article  ADS  MathSciNet  Google Scholar 

  104. E. I. Buchbinder, B. A. Ovrut, I. L. Buchbinder, E. A. Ivanov, and S. M. Kuzenko, “Low-energy effective action in N = 2 supersymmetric field theories,” Phys. Part. Nucl. 32, 641–674 (2001).

    Google Scholar 

  105. N. Seiberg and E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in 1 = 2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426, 19–52 (1994); Nucl. Phys. B 430, 485–486E (1994); arXiv:hep-th/9407087.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. E. A. Ivanov, S. V. Ketov, and B. M. Zupnik, “Induced hypermultiplet selfinteractions in N = 2 gauge theories,” Nucl. Phys. B 509, 53–82 (1998); arXiv:hepth/9706078.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. I. L. Buchbinder and E. A. Ivanov, “Complete N = 4 structure of low-energy effective action in N = 4 super Yang–Mills theories,” Phys. Lett. B 524, 208–216 (2002); arXiv:hep-th/0111062.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. I. L. Buchbinder, E. A. Ivanov, and A. Yu. Petrov, “Complete low-energy effective action in 1 = 4 SYM: A direct N = 2 supergraph calculation,” Nucl. Phys. B 653, 64–84 (2003); arXiv:hep-th/0210241.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. D. Chicherin and E. Sokatchev, “A note on four-point correlators of half-BPS operators in N = 4 SYM,” J. High Energy Phys. 1411, 139 (2014); arXiv:1408.3527[hep-th].

    Article  ADS  Google Scholar 

  110. P. S. Howe and G. Papadopoulos, “Twistor spaces for HKT manifolds,” Phys. Lett. 379, 80–86 (1996); arXiv:hep-th/9602108.

    Article  MathSciNet  Google Scholar 

  111. E. Ivanov and O. Lechtenfeld, “N = 4 supersymmetric mechanics in harmonic superspace,” J. High Energy Phys. 0309, 073 (2003); arXiv:hep-th/0307111.

    Article  ADS  MathSciNet  Google Scholar 

  112. E. Ivanov and A. Sutulin, “Sigma models in (4, 4) harmonic superspace,” Nucl. Phys. B 432, 246–280 (1994); Nucl. Phys. B 483, 531E (1997); arXiv:hepth/9404098.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. E. A. Ivanov, “Off-shell (4, 4) supersymmetric sigma models with torsion as gauge theories in harmonic superspace,” Phys. Lett. B 356, 239–248 (1995); arXiv:hep-th/9504070.

    Article  ADS  MathSciNet  Google Scholar 

  114. E. Ivanov and J. Niederle, “Bi-harmonic superspace for 1 = 4 mechanics,” Phys. Rev. D 80, 065027 (2009); arXiv:0905. 3770[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  115. B. M. Zupnik and D. V. Khetselius, “Three-dimensional extended supersymmetry in the harmonic superspace,” Phys. At. Nucl. 47, 730–735 (1988).

    Google Scholar 

  116. B. M. Zupnik, “Harmonic superpotentials and symmetries in gauge theories with eight supercharges,” Nucl. Phys. B 554, 365–390 (1999); Nucl. Phys. B 644, 405E (2002); arXiv:hep-th/9902038.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. B. M. Zupnik, “Chern-Simons D = 3, N = 6 superfield theory,” Phys. Lett. B 660, 254–259 (2008); arXiv:0711. 4680[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  118. I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov, and B. M. Zupnik, “ABJM models in N = 3 harmonic superspace,” J. High Energy Phys. 0903, 096 (2009); arXiv:0811. 4774[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  119. I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov, and B. M. Zupnik, “Quantum N = 3, d = 3 Chern-Simons matter theories in harmonic superspace,” J. High Energy Phys. 0910, 075 (2009); arXiv:0909. 2970[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  120. B. M. Zupnik, “Six-dimensional supergauge theories in the harmonic superspace,” Nucl. At. Phys. 44, 512 (1986).

    Google Scholar 

  121. P. S. Howe, K. S. Stelle, and P. C. West, “N = 1, d = 6 harmonic superspace,” Classical Quantum Gravity 2, 815–821 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. E. A. Ivanov, A. V. Smilga, and B. M. Zupnik, “Renormalizable supersymmetric gauge theory in six dimensions,” Nucl. Phys. B 726, 131–148 (2005); arXiv:hep-th/0505082.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. E. A. Ivanov and A. V. Smilga, “Conformal properties of hypermultiplet actions in six dimensions,” Phys. Lett. B 637, 374–381 (2006); arXiv:hep-th/0510273.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. G. Bossard, E. Ivanov, and A. Smilga, “Ultraviolet behavior of 6D supersymmetric Yang–Mills theories and harmonic superspace,” J. High Energy Phys. 1512, 085 (2015); arXiv:1509. 08027[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  125. F. Delduc and E. Ivanov, “N = 4 super KdV equation,” Phys. Lett. B 309, 312–319 (1993); arXiv:hepth/9301024.

    Article  ADS  MathSciNet  Google Scholar 

  126. E. A. Ivanov and A. V. Smilga, “Symplectic sigma models in superspace,” Nucl. Phys. B 694, 473–492 (2004); arXiv:hep-th/0402041.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  127. S. Bellucci, E. Ivanov, and A. Sutulin, “N = 8 mechanics in SU(2) × SU(2) harmonic superspace,” Nucl. Phys. B 722, 297–327 (2005); Nucl. Phys. B 747, 464–465E (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  128. E. Ivanov, “Nonlinear (4, 8, 4) multiplet of N = 8, d = 1 supersymmetry,” Phys. Lett. B 639, 579–585 (2006); arXiv:hep-th/0605194.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  129. F. Delduc and E. Ivanov, “Gauging N = 4 supersymmetric mechanics,” Nucl. Phys. B 753, 211–241 (2006); arXiv:hep-th/0605211; “Gauging N = 4 supersymmetric mechanics II: (1, 4, 3) models from the (4, 4, 0) ones,” Nucl. Phys. B 770, 179–205 (2007); arXiv:hep-th/0611247; “The common origin of linear and nonlinear chiral multiplets in N = 4 mechanics,” Nucl. Phys. B 787, 176–197 (2007); arXiv:0706. 0706[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  130. F. Delduc and E. Ivanov, “New model of N = 8 superconformal mechanics,” Phys. Lett. B 654, 200–205 (2007); arXiv:0706. 2472[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  131. S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Supersymmetric Calogero models by gauging,” Phys. Rev. D 79, 105015 (2009); arXiv:0812.4276[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  132. E. A. Ivanov, M. A. Konyushikhin, and A. V. Smilga, “SQM with non-abelian self-dual fields: Harmonic superspace description,” J. High Energy Phys. 1005, 033 (2010); arXiv:0912.3289[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. L. Andrianopoli, S. Ferrara, E. Sokatchev, and B. Zupnik, “Shortening of primary operators in N extended SCFT(4) and harmonic superspace analyticity,” Adv. Theor. Math. Phys. 3, 1149–1197 (1999); arXiv:hep-th/9912007.

    Article  MathSciNet  MATH  Google Scholar 

  134. M. Arai, E. Ivanov, and J. Niederle, “Massive nonlinear sigma models and BPS domain walls in harmonic superspace,” Nucl. Phys. B 680, 23–50 (2004); arXiv:hep-th/0312037.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. C. Devchand and V. Ogievetsky, “Selfdual supergravities,” Nucl. Phys. B 444, 381–400 (1995); arXiv:hepth/9501061.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. E. A. Ivanov and B. M. Zupnik, “N = 3 supersymmetric Born-Infeld theory,” Nucl. Phys. B 618, 3–20 (2001); arXiv:hep-th/0110074.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  137. E. Ivanov, O. Lechtenfeld, and B. Zupnik, “Nilpotent deformations of N = 2 superspace,” J. High Energy Phys. 0402, 012 (2004); arXiv:hep-th/0308012.

    Article  ADS  MathSciNet  Google Scholar 

  138. S. Ferrara, E. Ivanov, O. Lechtenfeld, E. Sokatchev, and B. Zupnik, “Non-anticommutative chiral singlet deformation of N = (1, 1) gauge theory,” Nucl. Phys. B 704, 154–180 (2005); arXiv:hep-th/0405049.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  139. E. Ivanov, O. Lechtenfeld, and B. Zupnik, “Non-anticommutative deformation of N = (1, 1) hypermultiplets,” Nucl. Phys. B 707, 69–86 (2005); arXiv:hepth/0408146.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  140. S. J. Gates, C. M. Hull, and M. Roček, “Twisted multiplets and new supersymmetric non-linear sigma models,” Nucl. Phys. B 248, 157–186 (1984).

    Article  ADS  Google Scholar 

  141. E. A. Ivanov, S. O. Krivonos, and V. M. Leviant, “A new class of superconformal sigma models with the Wess-Zumino action,” Nucl. Phys. B 304, 601–627 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  142. E. A. Ivanov, S. O. Krivonos, and V. M. Leviant, “Quantum N = 3, N = 4 superconformal WZW sigma models,” Phys. Lett. B 215, 689–694 (1988); Phys. Lett. B 221, 432E (1989).

    Article  ADS  MathSciNet  Google Scholar 

  143. E. Witten, “Dynamical breaking of supersymmetry,” Nucl. Phys. B 188, 513–554 (1981); “Constraints on supersymmetry breaking,” Nucl. Phys. B 202, 253–316 (1982).

    Article  ADS  MATH  Google Scholar 

  144. A. Pashnev and F. Toppan, “On the classification of N extended supersymmetric quantum mechanical systems,” J. Math. Phys. 42, 5257–5271 (2001); arXiv:hep-th/0010135.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. E. A. Ivanov, S. O. Krivonos, and A. I. Pashnev, “Partial supersymmetry breaking in N = 4 supersymmetric quantum mechanics,” Classical Quantum Gravity 8, 19–40 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  146. E. A. Ivanov and A. V. Smilga, “Dirac operator on complex manifolds and supersymmetric quantum mechanics,” Int. J. Mod. Phys. A 27, 1230024 (2012); arXiv:1012. 2069[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  147. S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Superconformal mechanics,” J. Phys. A: Math. Gen. 45, 173001 (2012); arXiv:1112. 1947[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  148. E. Ivanov and S. Sidorov, “Deformed supersymmetric mechanics,” Classical Quantum Gravity 31, 075013 (2014); arXiv:1307. 7690[hep-th]; “Super Káhler oscillator from SU(21) superspace,” J. Phys. A: Math. Gen. 47, 292002 (2014); arXiv:1312. 6821[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  149. E. Ivanov, L. Mezincescu, and P. K. Townsend, “Fuzzy CP(NM) as a quantum superspace,” arXiv:hep-th/0311159; “A super-flag Landau model,” arXiv:hep-th/0404108; “Planar super-Landau models,” J. High Energy Phys. 0601, 143 (2006); arXiv:hep-th/0510019.

    MathSciNet  Google Scholar 

  150. T. Curtright, E. Ivanov, L. Mezincescu, and P. K. Townsend, “Planar super-Landau models revisited,” J. High Energy Phys. 0704, 020 (2007); arXiv:hep-th/0612300.

    Article  ADS  MathSciNet  Google Scholar 

  151. A. Beylin, T. L. Curtright, E. Ivanov, L. Mezincescu, and P. K. Townsend, “Unitary spherical super-Landau models,” J. High Energy Phys. 0810, 069 (2008); arXiv:0806.4716[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. E. Ivanov, “Supersymmetrizing Landau models,” Theor. Math. Phys. 154, 349–361 (2008); arXiv:0705. 2249[hep-th].

    Article  MATH  Google Scholar 

  153. V. Bychkov and E. Ivanov, “N = 4 supersymmetric Landau models,” Nucl. Phys. B 863, 33–64 (2012); arXiv:1202. 4984[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  154. J. Bagger and J. Wess, “Partial breaking of extended supersymmetry,” Phys. Lett. B 138, 105–110 (1984).

    Article  ADS  Google Scholar 

  155. J. Hughes and J. Polchinski, “Partially broken global supersymmetry and the superstring,” Nucl. Phys. B 278, 147–169 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  156. S. Bellucci, E. Ivanov, and S. Krivonos, “Superbranes and super-Born-Infeld theories from nonlinear realizations,” Nucl. Phys. Proc. Suppl. 102, 26–41 (2001); arXiv:hep-th/0103136.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  157. E. Ivanov, “Superbranes and super Born-Infeld theories as nonlinear realizations,” Theor. Math. Phys. 129, 1543–1557 (2001); arXiv:hep-th/0105210.

    Article  MATH  Google Scholar 

  158. S. Bellucci, E. Ivanov, and S. Krivonos, “N = 2 and N = 4 supersymmetric Born-Infeld theories from nonlinear realizations,” Phys. Lett. B 502, 279–290 (2001); arXiv:hep-th/0012236; “Towards the complete N = 2 superfield Born-Infeld action with partially broken N = 4 supersymmetry,” Phys. Rev. D 64, 025014 (2001); arXiv:hep-th/0101195.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  159. S. Bellucci, E. Ivanov, and S. Krivonos, “Partial breaking of N = 1 D = 10 supersymmetry,” Phys. Lett. B 460, 348–358 (1999); arXiv:hep-th/9811244.

    Article  ADS  Google Scholar 

  160. E. A. Ivanov and B. M. Zupnik, “Modified N = 2 supersymmetry and Fayet-Iliopoulos terms,” Phys. At. Nucl. 62, 1043–1055 (1999); arXiv:hep-th/9710236.

    Google Scholar 

  161. S. Bellucci, E. Ivanov, and S. Krivonos, “AdS/CFT equivalence transformation,” Phys. Rev. D 66, 086001 (2002); Phys. Rev. D 67, 049901(E) (2003); arXiv:hep-th/0206126; E. Ivanov, “Conformal theories—AdS branes transform, or one more face of AdS/CFT,” Theor. Math. Phys. 139, 513–528 (2004); arXiv:hep-th/0305255.

    Article  ADS  MathSciNet  Google Scholar 

  162. E. Ivanov, S. Krivonos, and J. Niederle, “Conformal and superconformal mechanics revisited,” Nucl. Phys. B 677, 485–500 (2004); arXiv:hep-th/0210196.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. P. Claus, M. Derix, R. Kallosh, J. Kumar, P. K. Townsend, and A. van Proeyen, “Black holes and superconformal mechanics,” Phys. Rev. Lett. 81, 4553–4556 (1998); arXiv:hep-th/9804177.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  164. S. Bellucci, A. Galajinsky, E. Ivanov, and S. Krivonos, “AdS(2)/CFT(1), canonical transformations and superconformal mechanics,” Phys. Lett. B 555, 99–106 (2003); arXiv:hep-th/0212204.

    Article  ADS  MATH  Google Scholar 

  165. G. Goon, K. Hinterbichler, A. Joyce, and M. Trodden, “Galileons as Wess-Zumino terms,” J. High Energy Phys. 1206, 004 (2012); arXiv:1203. 3191[hep-th].

    Article  ADS  Google Scholar 

  166. B. M. Zupnik and D. G. Pak, “Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities,” Theor. Math. Phys. 77, 1070–1076 (1988).

    Article  MathSciNet  Google Scholar 

  167. E. A. Ivanov, “Chern–Simons matter systems with manifest N = 2 supersymmetry,” Phys. Lett. B 268, 203–208 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  168. B. M. Zupnik, “Three-dimensional 1 = 4 superconformal superfield theories,” Theor. Math. Phys. 162, 74–89 (2010); arXiv:0905. 1179[hep-th].

    Article  MathSciNet  MATH  Google Scholar 

  169. M. Goykhman and E. Ivanov, “Worldsheet supersymmetry of Pohlmeyer-reduced AdSn × Sn superstrings,” J. High Energy Phys. 1109, 078 (2011); arXiv:1104.0706[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  170. M. Grigoriev and A. A. Tseytlin, “Pohlmeyer reduction of AdS5 × S5 superstring sigma model,” Nucl. Phys. B 800, 450–501 (2008); arXiv:0711. 0155[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  171. E. Ivanov and J. Lukierski, “Higher spins from nonlinear realizations of OSp(18),” Phys. Lett. B 624, 304–315 (2005); arXiv:hep-th/0505216.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  172. S. Fedoruk and E. Ivanov, “Master higher-spin particle,” Classical Quantum Gravity 23, 5195–5214 (2006); arXiv:hep-th/0604111.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  173. S. Fedoruk, E. Ivanov, and J. Lukierski, “Massless higher spin D = 4 superparticle with both N = 1 super symmetry and its bosonic counterpart,” Phys. Lett. B 641, 226–236 (2006); arXiv:hep-th/0606053.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  174. S. Fedoruk and J. Lukierski, “New spinorial particle model in tensorial space-time and interacting higher spin fields,” J. High Energy Phys. 1302, 128 (2013); arXiv:1210.1506[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  175. I. L. Buchbinder, V. A. Krykhtin, and A. Pashnev, “BRST approach to Lagrangian construction for fermionic massless higher spin fields,” Nucl. Phys. B 711, 367–391 (2005); arXiv:hep-th/0410215.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  176. S. M. Kuzenko and S. Theisen, “Nonlinear selfduality and supersymmetry,” Fortsch. Phys. 49, 273–309 (2001); arXiv:hep-th/0007231.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  177. E. A. Ivanov and B. M. Zupnik, “New approach to nonlinear electrodynamics: Dualities as symmetries of interaction,” Phys. At. Nucl. 67, 2188–2199 (2004); arXiv:hep-th/0303192.

    Article  MathSciNet  Google Scholar 

  178. E. A. Ivanov and B. M. Zupnik, “Bispinor auxiliary fields in duality-invariant electrodynamics revisited,” Phys. Rev. D 87, 065023 (2013); arXiv:1212.6637[hep-th].

    Article  ADS  Google Scholar 

  179. E. A. Ivanov and B. M. Zupnik, “Bispinor auxiliary fields in duality-invariant electrodynamics revisited: the U(N) case,” Phys. Rev. D 88, 045002 (2013); arXiv:1304.1366[hep-th].

    Article  ADS  Google Scholar 

  180. E. A. Ivanov, O. Lechtenfeld, and B. M. Zupnik, “Auxiliary tensor fields for Sp(2, R) self-duality,” J. High Energy Phys. 1503, 123 (2015); arXiv:1412.5960[hep-th].

    Article  MathSciNet  Google Scholar 

  181. S. M. Kuzenko, “Duality rotations in supersymmetric nonlinear electrodynamics revisited,” J. High Energy Phys. 1303, 153 (2013); arXiv:1301.5194[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  182. E. Ivanov, O. Lechtenfeld, and B. Zupnik, “Auxiliary superfields in N = 1 supersymmetric self-dual electrodynamics,” J. High Energy Phys. 1305, 133 (2013); arXiv:1303.5962[hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  183. E. A. Ivanov and B. M. Zupnik, “Self-dual 1 = 2 Born-Infeld theory through auxiliary superfields,” J. High Energy Phys. 1405, 061 (2014); arXiv:1312.5687[hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  184. S. Fedoruk and J. Lukierski, “Twistorial versus spacetime formulations: unification of various string models,” Phys. Rev. D 75, 026004 (2007); arXiv:hepth/0606245.

    Article  ADS  MathSciNet  Google Scholar 

  185. J. A. de Azcarraga, S. Fedoruk, J. M. Izquierdo, and J. Lukierski, “Two-twistor particle models and free massive higher spin fields,” J. High Energy Phys. 1504, 010 (2015); arXiv:1409.7169[hep-th].

    Article  Google Scholar 

  186. M. Piatek and A. R. Pietrykowski, “Classical irregular block, 1 = 2 pure gauge theory and Mathieu equation,” J. High Energy Phys. 1412, 032 (2014); arXiv:1407.0305[hep-th].

    Article  ADS  Google Scholar 

  187. O. Kichakova, J. Kunz, E. Radu, and Ya. Shnir, “Non-Abelian fields in AdS4 spacetime: Axially symmetric, composite configurations,” Phys. Rev. D 90, 124012 (2014); arXiv:1409.1894[gr-qc].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivanov.

Additional information

To the memory of V.I. Ogievetsky and I.V. Polubarinov

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, E.A. Gauge fields, nonlinear realizations, supersymmetry. Phys. Part. Nuclei 47, 508–539 (2016). https://doi.org/10.1134/S1063779616040080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616040080

Navigation