Skip to main content
Log in

Investigations of fission characteristics and correlation effects

  • The issue is devoted to the 60th anniversary of the Joint Institute for Nuclear Research
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review the experimental results on the P-even and P-odd angular correlations of fission fragments in the fission of the 235U and 239Pu nuclei induced by unpolarized and polarized resonance neutrons, and on the TRI and ROT effects in the ternary and binary fission of actinides induced by polarized thermal neutrons. Also reported are the measured yields of prompt and delayed neutrons per fission event. The experimental data are analyzed within a novel theoretical framework developed by the JINR—RNC KI Collaboration, whereby the reduction of the multidimensional phase space of fission fragments to the JπK-channel space is consistently validated and the role of resonance interference in the observed correlation effects is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Guseva, G. A. Petrov, A. K. Petukhov, V. E. Sokolov, V. P. Alfimenkov, L. B. Pikelner, and W. I. Furman, “Effective parameters of neutron p-wave resonances of 233,235U fission cross section in energy range 1-70 eV”, Proceedings of the ISINN-2 Seminar (JINR, Dubna, 1994), p. 276.

  2. V. P. Alfimenkov, I. S. Guseva, A. M. Gagarski, S. P. Golosovskaya, I. A. Krasnoschokova, A. M. Morozov, G. A. Petrov, V. L. Petrova, A. K. Petukhov, L. B. Pikelner, Yu. S. Pleva, V. E. Sokolov, S. M. Soloviev, and G. V. Val’ski, “P-odd, left-right and forwardbackward asymmetries of fragment angular distribution in 233U fission induced by the low energy neutrons and forward-backward asymmetry in 239Pu fission”, Proceedings of the ISINN-3 Seminar (JINR, Dubna, 1995), p. 276.

  3. V. P. Alfimenkov, G. V. Val’skii, A. M. Gagarskii, P. Gel’tenborg, I. S. Guseva, I. Last, G. A. Petrov, A. K. Petukhov, L. B. Pikel’ner, Yu. S. Pleve, V. E. Sokolov, V. I. Furman, K. Shrekkenbakh, and O. A. Shcherbakov, “Interference effects in angular distributions of fission fragments in the fission of heavy nuclei induced by thermal and resonance neutrons”, Yad. Fiz. 58, 799 (1995) [Phys. At. Nucl. 58, 737 (1997)].

    Google Scholar 

  4. A. M. Gagarski, I. S. Guseva, S. P. Golosovskaya, I. A. Krasnoschokova, A. M. Morozov, G. A. Petrov, V. L. Petrova, A. K. Petukhov, Yu. S. Pleva, V. E. Sokolov, S. M. Soloviev, G. V. Val’ski, V. P. Alfimenkov, A. N. Chernikov, L. Lason, Yu. D. Mareev, V. V. Novitski, L. B. Pikelner, V. R. Skoy, and M. I. Tsulaya, “Investigations of the parity violation and interference effects in 235U fission induced by resonance neutrons”, Proceedings of the ISINN-5 Seminar (JINR, Dubna, 1997), p. 182.

    Google Scholar 

  5. V. P. Alfimenkov, A. M. Gagarskii, S. P. Golosovskaya, I. S. Guseva, I. S. Krasnoshchekova, L. Lason’, Yu. D. Mareev, V. V. Novitskii, G. A. Petrov, V. I. Petrova, A. K. Petukhov, L. B. Pikel’ner, Yu. S. Pleve, V. E. Sokolov, M. I. Tsulaya, and A. N. Chernikov, “Investigations of spatialparity violation and interference effects in angular distributions of fission fragments in 235U fission induced by resonance neutrons”, Yad. Fiz. 63, 598 (2000) [Phys. At. Nucl. 63, 539 (2000)].

    Google Scholar 

  6. V. P. Alfimenkov, A. N. Chernikov, L. Lason et al., Nucl. Phys. A 645, 31 (1999).

    Article  ADS  Google Scholar 

  7. A. M. Gagarski, I. S. Guseva, I. A. Krasnoschokova, G. A. Petrov, V. L. Petrova, A. K. Petukhov, Yu. S. Pleva, V. E. Sokolov, S. M. Soloviev, V. P. Alfimenkov, N. Bazhanov, A. N. Chernikov, W. I. Furman, L. Lason, Yu. D. Mareev, V. V. Novitski, L. B. Pikelner, T. L. Pikelner, A. B. Popov, M. I. Tsulaya, and A. L. Barabanov, “Investigations of parity violation and interference effects in fission of 239Pu induced by resonance neutrons”, Proceedings of the ISINN-10 Seminar (JINR, Dubna, 2002), p. 184.

    Google Scholar 

  8. V. E. Sokolov, A. M. Gagarski, I. S. Guseva et al., Proceedings of International Conference on Nuclear Data for Science and Technology, Ed. by R. C. Height et al. (2005), p. 708.

  9. A. L. Barabanov, A. B. Popov, and W. I. Furman, “Helicity approach to interference effects in neutron induced fision”, Proceedings of the ISINN-10 Seminar (JINR, Dubna, 2002), p. 171.

    Google Scholar 

  10. A. Barabanov, W. Furman, and A. Popov, in Astrophysics, Symmetries and Applied Physics at Spallation neutron Sources (World Scientific, 2002), p. 185.

    Google Scholar 

  11. Yu. N. Kopach, A. B. Popov, W. I. Furman, D. I. Tambovtsev, L. K. Kozlovsky, N. N. Gonin, and J. Kliman, “Angular anisotropy of fission fragments from the resonance neutron induced fission of aligned 235U target and the role of JπK fission channels”, Phys. At. Nucl. 62, 929 (1999).

    Google Scholar 

  12. Yu. N. Kopach, A. B. Popov, V. I. Furman, V. P. Alfimenkov, L. Lason’, L. B. Pikel’ner, N. N. Gonin, L. K. Kozlovskii, D. I. Tambovtsev, A. M. Gagarskii, G. A. Petrov, and V. E. Sokolov, “The fission of heavy nuclei induced by resonance neutrons”, Fiz. Elem. Chastits At. Yadra 32, V. 7, 204 (2001) [in Russian].

    Google Scholar 

  13. Yu. V. Taran and F. L. Shapiro, “Some methods for polarizing the intermediate-energy neutrons and analyzing their polarization”, Zh. Eksp. Teor. Fiz. 44, 2185 (1963) [in Russian].

    Google Scholar 

  14. A. L. Barabanov and W. I. Furman, “New theoretical possibilities of describing P-even and P-odd angular correlation of fission fragments from resonance-neutron-induced fission”, Proceedings of International Conference on Nuclear Data for Science and Technology, Ed. By J. K. Dickens (Gatlinburg, Tennessee, 1994), v. 1, p. 448.

    Google Scholar 

  15. A. L. Barabanov and W. I. Furman, “Formal theory of neutron induced fission”, Z. Phys. A 357, 411 (1997).

    Article  ADS  Google Scholar 

  16. A. L. Barabanov and W. I. Furman, “Test of fundamental symmetries as a tool for fission dynamic studies”, Czechoslovak Journal of Physics, Suppl. B 53, 359 (2003).

    Google Scholar 

  17. V. M. Strutinskii, “On the angular distribution of fission fragments”, Zh. Eksp. Teor. Fiz. 30, 606 (1956) [in Russian].

    Google Scholar 

  18. A. Bohr, “On the theory of nuclear fission,” Proceedings of International Conference on the Peaceful Uses of Atomic Energy (United Nations Organization, New York, 1956), v. 2, p. 151.

    Google Scholar 

  19. J. M. Blatt and L. C. Biedenharn, “The angular distribution of scattering and reaction cross section,” Rev. Mod. Phys 24, 258 (1952).

    Article  ADS  MATH  Google Scholar 

  20. W. Furman and J. Kliman, “Fluctuation of fission characteristics and the structure of fission channels”, Proceedings of the 17th International Symposium on Nuclear Physics, Ed. by D. Seeliger and H. Kalka (ZfK, Drezden, 1988), p. 142.

    Google Scholar 

  21. N. J. Pattenden and H. Postma, “Fission of aligned 235U nuclei induced by neutrons of 0. 2 to 2000 eV”, Nucl. Phys. A 167, 225 (1971).

    Article  ADS  Google Scholar 

  22. National Nuclear Data Center, http://wwwnndcbnlgov

  23. A. L. Barabanov and W. I. Furman, “Particular properties of the K = 0 channel in nuclear fission”, Yad. Fiz. 72, 1311 (2009) [Phys. At. Nucl. 72, 1259 (2009)].

    Google Scholar 

  24. S. G. Kadmensky, V. M. Markushev, and W. I. Furman, “Nonconservation of the spin projection to the nucleus symmetry axis in neutron resonances and the Coriolis mixing”, Phys. At. Nucl. 35, 300 (1982).

    Google Scholar 

  25. F. Bechvarzh, “Gamma decays of neutron resonances”, Proceedings of the 2nd School on Neutron Physics (Alushta, 1974), Report JINR D3-7991 (1974), p. 294 [in Russian].

    Google Scholar 

  26. V. E. Bunakov and L. B. Pikelner, “Parity and time reversal violation in neutron-nucleus reactions,” Progr. Part. Nucl. Phys. 33, 337 (1997).

    Article  ADS  Google Scholar 

  27. P. Jesinger, G. V. Danilyan, A. M. Gagarski, P. Geltenbort, F. Goennenwien, A. Koetzle, Ye. I. Korobkina, M. Mutterer, V. Vesvizhevsky, S. R. Neumaier, V. S. Pavlov, G. A. Petrov, V. I. Petrova, K. Schmidt, V. B. Shvachkin, and O. Zimmer, “Interference effect in angular distribution of outgoing particles in ternary fission induced by cold polarized neutrons”, Yad. Fiz. 62, 1723 (1999).

    Google Scholar 

  28. K. Schreckenbach, Internal ILL Report 88SCO9T, Grenoble, 1988.

    Google Scholar 

  29. V. E. Bunakov and G. A. Petrov, “A possible explanation of the triple correlation origin in ternary fission”, Proceedings of the VIII International Seminar on Interactions of Neutrons with Nuclei, (JINR, Dubna, 2000), p. 84.

    Google Scholar 

  30. A. L. Barabanov, “Spin-orbit interaction in final state as possible reason for T-odd correlation in ternary fission”, Proceedings of the IX International Seminar on Interactions of Neutrons with Nuclei (JINR, Dubna, 2001), p. 93.

    Google Scholar 

  31. V. E. Bunakov and S. G. Kadmenskii, “T-odd asymmetries of angular distributions of nuclear fragments in ternary fission”, Izv. Akad. Nauk, Ser. Fiz. 68, 1090 (2004) [Bull. Russ. Acad. Sci: Phys. 68, 1229 (2004)].

    Google Scholar 

  32. F. Goennenwein, M. Mutterer, A. Gagarski, I. Guseva, G. Petrov, V. Sokolov, N. Zavarukhina, Yu. Gusev, J. von Kalben, V. Nesvizhavsky, and T. Soldner, “Rotation of compound nucleus 236U in the fission reaction 235U(n,f) induced by cold polarized neutrons”, Phys. Lett. B 652, 13 (2007).

    Article  ADS  Google Scholar 

  33. G. V. Danilyan, P. Granz, V. A. Krakhotin, F. Mezei, V. V. Novitsky, V. S. Pavlov, M. Russina, P. B. Shatalov, and T. Wilpert, “Rotational effect of fissile nucleus in binary fission of 235U induced by cold polarized neutrons”, Phys. Lett. B 679, 25 (2009).

    Article  ADS  Google Scholar 

  34. G. V. Danilyan, I. Klenke, V. A. Krakhotin, V. L. Kuznetsov, V. Novitskii, V. S. Pavlov, and P. B. Shatalov, “Prefission gamma-quanta”, Yad. Fiz. 72, 1872 (2009) [Phys. At. Nucl. 72, 1812 (2009)].

    Google Scholar 

  35. G. V. Danilyan, I. Klenke, V. A. Krakhotin, V. V. Novitskii, V. S. Pavlov, and P. B. Shatalov, “Search for T-odd correlations in the emission of prompt neutrons in the polarized-neutron-induced fission of 235U nuclei”, Yad. Fiz. 73, 1155 (2010) [Phys. At. Nucl. 73, 1116 (2010)].

    Google Scholar 

  36. G. V. Danilyan, I. Klenke, V. A. Krakhotin, Yu. N. Kopach, V. V. Novitskii, V. S. Pavlov, and P. B. Shatalov, “T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons”, Yad. Fiz. 74, 697 (2011) [Phys. At. Nucl. 74, 671 (2011)].

    Google Scholar 

  37. G. V. Danilyan, I. Klenke, Yu. N. Kopach, V. A. Krakhotin, V. V. Novitskii, V. S. Pavlov, and P. B. Shatalov, “Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei”, Yad. Fiz. 77, 715 (2014) [Phys. At. Nucl. 77, 677 (2014)].

    Google Scholar 

  38. G. A. Petrov, A. M. Gagarskii, I. S. Guseva, V. E. Mokolov, G. V. Vol’skii, A. S. Vorob’eva, D. O. Krinitsin, O. A. Shcherbakov, D. V. Nikolaev, Yu. S. Pleve, V. I. Petrova, and T. A. Zavarukhina, “Major results of an investigation of prompt neutrons from nuclei fission at low excitation energies”, Yad. Fiz. 71, 1165 (2008) [Phys. At. Nucl. 71, 1149 (2008)].

    Google Scholar 

  39. A. M. Gagarski, F. Goennenwein, I. S. Guseva, T. A. Zavarukhina, Yu. N. Kopatch, T. E. Kuzmina, M. Mutterer, V. Nesvizhevsky, G. A. Petrov, T. Soldner, and G. Tiurin, “T-odd asymmetry effects of the light particles emission in the heavy nucleus ternary fission by cold polarized neutrons”, Proceedings of the XIX International Seminar on Interactions of Neutrons with Nuclei (JINR, Dubna, 2011), p. 24.

    Google Scholar 

  40. A. L. Barabanov and W. I. Furman, “Fission via compound states and JπK A. Bohr’s channels: what we can learn from recent studies with slow neutrons?”, European Physical Journal Web of Conference 21, 08002 (2012).

    Article  Google Scholar 

  41. W. Furman, “Quantum aspects of low-energy nuclear fission”, Proceedings of the Seminar on Fission, Ed. by C. Wagemans, J. Wagemans, and P. D’hondt (World Scientific, 2010), p. 53.

    Chapter  Google Scholar 

  42. C. E. Porter and R. G. Thomas, “Fluctuations of nuclear reaction widths”, Phys. Rev. 104, 483 (1956).

    Article  ADS  Google Scholar 

  43. N. Bohr and J. A. Wheeler, “The mechanism of nuclear fission”, Phys. Rev. 56, 426 (1939).

    Article  ADS  MATH  Google Scholar 

  44. V. M. Strutinsky, “Shell effects in nuclear masses and deformation energies”, Nucl. Phys. A 95, 420 (1967); “Shells in deformed nuclei”, ibid. 122, 1 (1968).

    Article  ADS  Google Scholar 

  45. U. Brosa, S. Grossmann, and A. Mũller, “Nuclear scission”, Phys. Rep. 197, 167 (1990).

    Article  ADS  Google Scholar 

  46. Yu. F. Smirnov and Yu. M. Chuvil’ski, “The structural forbiddenness of the heavy fragmentation of the atomic nucleus”, Phys. Lett. B 134, 25 (1984).

    Article  ADS  Google Scholar 

  47. C. Wagemans and A. J. Deruytter, “Ratio of the ternary to binary fission cross sections induced by resonance neutrons in 235U”, Nucl. Phys. A 194, 657 (1972).

    Article  ADS  Google Scholar 

  48. G. S. Ahmadov, Yu. N. Kopatch, S. A. Telezhnikov, F. I. Ahmadov, C. Granja, A. A. Garibov, and S. Pospisil, “Detection of ternary and quaternary fission fragments from 252Cf with a position-sensitive ΔE-E telescope based on silicon detectors”, Pis’ma Fiz. Elem. Chastits At. Yadra 12, 542 (2015).

    Google Scholar 

  49. X. Lopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong, “Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements”, Nucl. Instr. Meth. A 581, 485 (2007).

    Article  ADS  Google Scholar 

  50. C. Wagemans, “Spontaneous fission”, In Nuclear Fission Process, Ed. by C. Wagemans (CRC-Press, Boca Raton, 1991).

    Google Scholar 

  51. Sh. Zeynalov, F.-J. Hambsch, N. Varapai, S. Oberstedt, and O. Serot, “Prompt fission neutron emission in resonance fission of 239Pu”, Proceedings of the XII International Seminar on Interaction of Neutrons with Nuclei (JINR, Dubna, 2004), E3-2004-169, pp. 371–379.

    Google Scholar 

  52. C. Budtz-Jorgensen and H.-H. Knitter, “Simultaneous investigation of fission fragments and neutrons in 252Cf(Sf)”, Nucl. Phys. A 490, 307 (1988).

    Article  ADS  Google Scholar 

  53. F.-J. Hambsch, H.-H. Knitter, C. Budtz-Jorgensen, and J. P. Theobald, “Fission mode fluctuation in the resonances of 235U(n,f)”, Nuclear Physics A 491, 56 (1989).

    Article  ADS  Google Scholar 

  54. Sh. S. Zeinalov, M. Florek, W. I. Furman, V. A. Kriatchkov, and Yu. S. Zamyatnin, “Neutron energy dependence of 235U(n,f) mass and TKE distributions around 8. 77 eV resonance”, Proceedings of the VII International Seminar on Interaction of Neutrons with Nuclei (JINR, Dubna, 1999), E3-1999-212, pp. 258–262.

    Google Scholar 

  55. Sh. S. Zeinalov, M. Florek, W. I. Furman, V. A. Kriachkov, and Yu. S. Zamyatnin, „Neutron Energy Dependence of Fission Fragment Mass & TKE Distributions of 235U(n,f)- Reaction Below 10 eV“, Proceedings of the 4th International Conference on Dynamical Aspects of Nuclear Fission (Casta-Papiernicka, Slovak Republic), Ed. by J. Kliman (World Scientific, Singapore, 2000, pp. 417–423).

    Google Scholar 

  56. Sh. Zeinalov, W. Furman, and F.-J. Hambsch, “Investigation of mass-TKE distributions of fission fragments from 235U(n,f) reaction in resonances”, Proceedings of the XIII International Seminar on Interaction of Neutrons with Nuclei (JINR, Dubna, 2006), E3-2006-7, pp. 351–359.

    Google Scholar 

  57. H. Takahashi, T. Kurahashi, L. Zhang, D. Fukuda, M. Nakazawa, and M. Misawa, “Digital signal processing for CdTe detectors based on a waveform clustering algorithm”, Nucl. Instr. Meth. A 458, 375–381 (2001).

    Article  ADS  Google Scholar 

  58. W. K. Warburton and P. M. Grudberg, “Current trends in developing digital signal processing electronics for semiconductor detectors”, Nucl. Instr. Meth. A 568, 350–358 (2006).

    Article  ADS  Google Scholar 

  59. G. Pasquali, R. Ciaranfi, L. Bardelli, M. Bini, A. Boiano, F. Giannelli, A. Ordine, and G. Poggi, “A DSP equipped digitizer for online analysis of nuclear detector signals”, Nucl. Instr. Meth. A 570, 126–132 (2007).

    Article  ADS  Google Scholar 

  60. G. Gerardi, L. Abbene, A. La Manna, F. Fauci F, and G. Raso, “Digital filtering and analysis for a semiconductor X-ray detector data acquisition”, Nucl. Instr. Meth. A 571, 378–380 (2007).

    Article  ADS  Google Scholar 

  61. O. Zeinalova, Sh. Zeinalov, F.-I. Khambsh, and S. Oberstedt, “Application of the methods of digital signal processing in nuclear spectroscopy”, Izv. Acad. Nauk, Ser. Fiz. 73, 533–539 (2009) [in Russian].

    Google Scholar 

  62. C. E. Shannon, “A mathematical theory of communication”, The Bell System Technical Journal 27, 379–423 (1948); ibid. 27, 623–656 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  63. Sh. S. Zeynalov, O. V. Zeynalova, and V. I. Smirnov, “Delayed neutron yield measurement on thermal neutron induced fission of 237Np using cross-correlation technique”, in Nuclear Physics and Atomic Energy 2006-2009, v. 10, No. 1, pp. 100–104.

    Google Scholar 

  64. A. Andreev, D. Bogdanov, V. Chepigin, V. Gorshkov, K. Michailov, A. Kabachenko, G. Popeko, S. Saro, G. Ter-Akopian, A. Yeremin, and Sh. Zeinalov, “4-π ionization chamber–a detector for a kinematic separation of heavy ion reaction products”, Nucl. Instr. Meth. A 330, 209–220 (1993).

    Google Scholar 

  65. O. V. Zeinalova, Sh. S. Zeinalov, F. I. Khambsh, and S. Oberstedt, “A twin position-sensitive ionization chamber for implementing the backgammon and time-projection methods”, Izv. Akad. Nauk, Ser. Fiz. 75, 1623–1628 (2011) [in Russian].

    Google Scholar 

  66. G. R. Keepin, Physics of Nuclear Kinetics (Addison- Wesley Reading, 1965).

    Google Scholar 

  67. R. J. Tuttle, “Delayed neutron data for reactor physics analysis”, Nucl. Sci. Eng. 56, 37 (1975).

    Google Scholar 

  68. G. D. Spriggs, J. M. Campbell, and V. M. Piksaikin, “A method for determining the intensity of concomitant neutron source D(d, n)3He when studying the characteristics of delayed neutrons from nuclear fission induced by neutrons from reaction T(d, n)4He”, LANL report LA-UR-98-1619, Rev. 3 (Los Alamos, 1999).

    Google Scholar 

  69. S. B. Borzakov, E. Dermendzhiev, Yu. S. Zamyatnin, V. M. Nazarov, S. S. Pavlov, A. D. Rogov, and I. Ruskov, “A facility for studying the delayed neutrons and preliminary determination of Beff for 233U with respect to 235U”, Atomnaya Energiya 79, 231 (1995) [in Russian].

    Google Scholar 

  70. S. B. Borzakov, A. N. Andreev, E. Dermendjiev, A. Filip, W. I. Furman, Ts. Panteleev, I. Ruskov, Yu. S. Zamyatnin, and Sh. Zeinalov, “Measurements of delayed-neutron yields from thermal-neutroninduced fission of 235U, 233U, 239Pu, and 237Np”, Yad. Fiz. 63, 589 (2000).

    Google Scholar 

  71. R. W. Waldo, R. A. Karam, and R. A. Meyer, “Time dependent measurements and a predictive model”, Phys. Rev. C 23, 3 (1981).

    Article  Google Scholar 

  72. R. Mills, M. F. James, and D. R. Weaver, “Study of the delayed neutron yield and its time dependence”, Proceedings of International Conference on Nuclear Data for Science and Technology (Julich, 13–17 May 1991), pp. 86–88.

    Google Scholar 

  73. W. B. Wilson and T. R. England, “Delayed neutron study using ENDF/B-VI basic nuclear data”, Progress in Nuclear Energy 41, 71–107 (2002).

    Article  Google Scholar 

  74. N. A. Gundorin, K. V. Zhdanova, V. E. Zhuchko, L. B. Pikel’ner, N. V. Rebrova, I. M. Salamatin, V. I. Smirnov, and V. I. Furman, “A measurement of the delayed-neutron yield from 237Np fission induced by thermal neutrons”,” Yad. Fiz. 70, 1011 (2007) [Phys. At. Nucl. 70, 975–982 (2007)].

    Google Scholar 

  75. V. R. Andrianov, V. I. Vyachin, N. A. Gundorin et al., “The yield of delayed neutrons in the thermal-neutron-induced reaction 245Cm(n,f)”, Yad. Fiz. 71, 1705 (2008) [Phys. At. Nucl. 71, 1675–1683 (2008)].

    Google Scholar 

  76. V. M. Piksaikin, S. G. Isaev, and A. A. Goverdovsky, “The yield of delayed neutrons in the reaction 245Cm(n,f) induced by thermal neutrons”, Progress in Nuclear Energy 41, 361 (2002) [in Russian].

    Article  Google Scholar 

  77. M. Calviani, J. Praena, U. Abbondanno, and the n_TOF Collaboration, “High-accuracy 233U(n,f) cross-section measurement at the white-neutron source n_TOF from near-thermal to 1 MeV neutron energy”, Phys. Rev. C 80, 044604 (2009).

    Article  ADS  Google Scholar 

  78. C. Paradela, L. Tassan-Got, L. Audouin, and the n_TOF Collaboration, “Neutron-induced fission cross section of U-234 and Np-237 measured at the CERN Neutron Time-of-Flight (n_TOF) facility”, Phys. Rev. C 82, 034601 (2010).

    Article  ADS  Google Scholar 

  79. D. Tarrío, L. Tassan-Got, L. Audouin, and the n_TOF Collaboration, “Neutron-induced fission cross section of Pb-nat and Bi-209 from threshold to 1 GeV: An improved parametrization”, Phys. Rev. C 83, 044620 (2011).

    Article  ADS  Google Scholar 

  80. M. Calviani, M. H. Meaze, N. Colonna, and the n_TOF Collaboration, “Neutron-induced fission cross section of Cm-245: New results from data taken at the time-of-flight facility n_TOF”, Phys. Rev. C 85, 034603 (2012).

    Article  Google Scholar 

  81. F. Belloni, P. M. Milazzo, M. Calviani, and the n_TOF Collaboration, “Neutron-induced fission cross section measurement of U-233, Am-241 and Am-243 in the energy range 0. 5 MeV <= E-n <= 20 MeV at n_TOF at CERN”, Physica Scripta 150, 014005 (2012).

    Article  Google Scholar 

  82. R. Sarmento, M. Calviani, J. Praena, and the n_TOF Collaboration, “Measurement of the U-236(n,f) cross section from 170 meV To 2 MeV at the CERN n_TOF facility”, Phys. Rev. C 84, 044618 (2011).

    Article  ADS  Google Scholar 

  83. M. Calviani, S. Andriamonje, E. Chiaveri, and the n_TOF Collaboration, “Fission cross-section measurements of U-233, Cm-245 and Am-241, Am-243 at CERN n_TOF facility”, Journal of the Korean Physical Society 59, 1912–1915 (2011).

    Article  Google Scholar 

  84. F. Belloni, M. Calviani, N. Colonna, and the n_TOF Collaboration, “Neutron-induced fission cross-section of U-233 in the energy range 0. 5 < E-n < 20 MeV”, Eur. Phys. J. A 47, 160 (2011).

    Article  ADS  Google Scholar 

  85. C. Guerrero, D. Cano-Ott, E. Mendoza, and the n_TOF Collaboration, “Measurement and resonance analysis of the Np-237 neutron capture cross section”, Phys. Rev. C 85, 044604 (2012).

    Article  Google Scholar 

  86. G. Tagliente, P. M. Milazzo, K. Fujii, and the n_TOF Collaboration, “Neutron capture on Zr-94: Resonance parameters and Maxwellian-averaged cross sections”, Phys. Rev. C 84, 014607 (2011).

    Article  Google Scholar 

  87. C. Lederer, N. Colonna, C. Domingo-Pardo, and the n_TOF Collaboration, “Au-197(n, gamma) cross section in the unresolved resonance region”, Phys. Rev. C 83, 034608 (2011).

    Article  ADS  Google Scholar 

  88. D. Cano-Ott, F. Alvarez-Velarde, E. Gonzalez-Romero, and the n_TOF Collaboration, “Neutron capture measurements on minor actinides at the n_TOF facility at CERN: Past, present and future”, Journal of the Korean Physical Society 59, 1809–1812 (2011).

    Article  Google Scholar 

  89. M. Mosconi, K. Fujii, A. Mengoni, and the n_TOF Collaboration, “I. Measurement of the (n, γ) cross sections of Os-186, Os-187, Os-188 at the CERN n_TOF facility”, Phys. Rev. C 82, 014607 (2010).

  90. K. Fujii, M. Mosconi, A. Mengoni, and the n_TOF Collaboration, “Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n, γ) cross sections of Os-186, Os-187,Os-188”, Phys. Rev. C 82, 015804 (2010).

    Article  ADS  Google Scholar 

  91. C. Massimi, C. Domingo-Pardo, G. Vannini, and the n_TOF Collaboration, “Au-197(n, γ) cross section in the resonance region”, Phys. Rev. C 81, 044616 (2010).

    Article  ADS  Google Scholar 

  92. C. Guerrero, U. Abbondanno, G. Aerts, and the n_TOF Collaboration, “The n_TOF total absorption calorimeter for neutron capture measurements at CERN”, Nucl. Instr. Meth. A 608, 424–433 (2009).

    Article  ADS  Google Scholar 

  93. C. Domingo-Pardo, U. Abbondanno, G. Aerts, and the n_TOF Collaboration, “The measurement of the 206Pb(n, γ) cross section and stellar implications”, Journal of Physics G 35, 014015 (2008).

    Article  ADS  Google Scholar 

  94. R. Terlizzi, U. Abbondanno, G. Aerts, and the n_TOF Collaboration, “The La-139(n, γ) cross section: Key for the onset of the s-process”, Phys. Rev. C 75, 034603 (2007).

    Article  Google Scholar 

  95. F. Gunsing, U. Abbondanno, G. Aerts, and the n_TOF Collaboration, “Status and outlook of the neutron time-of-flight facility at CERN”, Nucl. Instr. Meth. B 261, 925–929 (2007).

    Article  ADS  Google Scholar 

  96. C. Domingo-Pardo, U. Abbondanno, G. Aerts, and the n_TOF Collaboration, “Measurement of the neutron capture cross section of the s-only isotope Pb-204 from 1 eV to 440 KeV”, Phys. Rev. C 75, 014601 (2007).

    Article  Google Scholar 

  97. C. Domingo-Pardo, U. Abbondanno, G. Aerts, and the n_TOF Collaboration, “Measurement of the radiative neutron capture cross section of Pb-206 and its astrophysical implications”, Phys. Rev. C 76, 044610 (2007).

    Article  Google Scholar 

  98. C. Domingo-Pardo, U. Abbondanno, G. Aerts, and the n_TOF Collaboration, “New measurement of neutron capture resonances in Bi-209”, Phys. Rev. C 74, 024608 (2006).

    Article  Google Scholar 

  99. G. Aerts, U. Abbondanno, H. Alvarez, and the n_TOF Collaboration, “Neutron capture cross section of Th-232 measured at the n_TOF facility at CERN in the unresolved resonance region up to 1 MeV”, Phys. Rev. C 73, 054605 (2006).

    Article  ADS  Google Scholar 

  100. G. Tagliente, K. Fujii, P. M. Milazzo, and the n_TOF Collaboration, “Neutron capture cross section of 90Zr: Bottleneck in the s-process reaction flow”, Phys. Rev. C 77, 034603 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Popov.

Additional information

Original Russian Text © N.A. Gundorin, Sh.S. Zeinalov, Yu.N. Kopach, A.B. Popov, V.I. Furman, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundorin, N.A., Zeinalov, S.S., Kopach, Y.N. et al. Investigations of fission characteristics and correlation effects. Phys. Part. Nuclei 47, 681–701 (2016). https://doi.org/10.1134/S1063779616040079

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616040079

Navigation