Skip to main content
Log in

Computer modeling of a compact isochronous cyclotron

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The computer modeling methods of a compact isochronous cyclotron are described. The main stages of analysis of accelerator facilities systems are considered. The described methods are based on theoretical fundamentals of cyclotron physics and mention highlights of creation of the physical project of a compact cyclotron. The main attention is paid to the analysis of the beam dynamics, formation of a magnetic field, stability of the movement, and a realistic assessment of intensity of the generated bunch of particles. In the article, the stages of development of the accelerator computer model, analytical ways of assessment of the accelerator parameters, and the basic technique of the numerical analysis of dynamics of the particles are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Samarskii and A. P. Mikhailov, Mathematical Modeling. Ideas. Methods. Examples, 2nd ed. (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  2. L. M. Onishchenko, “Cyclotrons: A Survey,” Phys. Part. Nucl. 39, 950 (2008).

    Article  Google Scholar 

  3. V. L. Smirnov and S. B. Vorozhtsov, “SNOP-Beam dynamics analysis code for compact cyclotrons,” in Proc. the XXI Russian Accelerator Conference (St. Petersburg, Russia, 2012).

    Google Scholar 

  4. J. J. Yang, A. Adelmann, M. Humbel et al., in Proc. HB2008 (Nashville, 2008).

    Google Scholar 

  5. A. A. Glazov, V. V. Kalinichenko, G. A. Karamysheva, and O. E. Lisenkova, “Program complex for cyclotron beam dynamic simulations,” in Proc. RuPAC’2004 (Dubna, Russia, 2004).

    Google Scholar 

  6. M. ihák, O. Lebeda, and J. Štursa, in Proc. Cyclotrons and their Applications (Giardini Naxos, Italy, 2007).

    Google Scholar 

  7. B. Wang et al., “Computer design of the compact cyclotron,” Phys. Part. Nucl. Lett., 1, 3(173), 471–488 (2012).

    Google Scholar 

  8. V. Smirnov, S. Vorozhtsov, A. Goto, S. Hojo, T. Honma, and K. Katagiri, “Quantitative simulation of NIRS cyclotron,” in Proc. IPAC'12 (New Orleans, USA, 2012).

    Google Scholar 

  9. V. L. Smirnov, “Complex modeling of compact cyclotron,” Extended Abstract of Cand. Dissertation, JINR, Dubna, 2013.

    Google Scholar 

  10. S. B. Vorozhtsov, A. S. Vorozhtsov, S. Watanabe, S. Kubono, and A. Goto, “Computation of Cyclotron Electromagnetic Fields,” IEEE Transactions on Nuclear Science, 58 (3) (2011).

    Google Scholar 

  11. T. L. Hart, D. J. Summers, and K. Paul, “Magnetic field expansion out of a plane: application to cyclotron development,” in Proc. PAC’11 (New York, USA, 2011).

    Google Scholar 

  12. Opera/Tosca Reference Manual. Vector Fields.

  13. A. N. Dubrovin, User’s Guide MERMAID: Magnet Design in Two and Three Dimensions, (SIM Limited, Novosibirsk, 1994), pp. 3–60.

    Google Scholar 

  14. S. Sytchevsky et al., “Numerical technology for design, development and measurements of magnet system in cyclotrons,” in Proc. 35th European Cyclotron Progress Meeting, ECPM2006 (Nice, France, 2006).

    Google Scholar 

  15. K. Halbach and R. F. Holsinger, “SUPERFISH-a computer program for evaluation of RF cavities with cylindrical symmetry,” Part. Accel. 7, 213–222 (1976).

    Google Scholar 

  16. www.cst.com

  17. E. R. Forringer, PhD Thesis (Michigan State University, 2004).

    Google Scholar 

  18. D. A. Ovsyannikov, Modeling and Optimization of Dynamics of Charged Particle Beams, (Izd. Len. Univ., Leningrad, 1990) [in Russian].

    MATH  Google Scholar 

  19. Y. Batygin, “Low energy beam transport for intense beams,” in Proc. High Intensity RF Linear Accelerators. U.S. Particle Accelerator School (Albuquerque, NewMexico, 2014).

    Google Scholar 

  20. M. Reiser, Theory and Design of Charged Particle Beams (Wiley, 1994).

    Book  Google Scholar 

  21. V. Smirnov, S. Vorozhtsov, and J. Vincent, “Design study of an ultra-compact superconducting cyclotron for isotope production,” Nucl. Instrum. Meth. Phys. Res. A.

  22. V. L. Smirnov and S. B. Vorozhtsov, Patent No. 2014103854 (4 February 2014).

    Google Scholar 

  23. Dmitrievskii et al., Preprint No. 1431, JINR (Dubna, 1963).

  24. I. Podadera et al., “Diagnostics for commissioning and operation of a novel compact cyclotron for radioisotope production,” Proc. IBIC2013 (Oxford, UK, 2013).

    Google Scholar 

  25. V. I. Zamolodchikov, Doctoral Dissertation in Math. and Phys. (JINR, Dubna, 1971).

    Google Scholar 

  26. H. L. Hagedorn and N. F. Verster, “Orbits in an AVF cyclotron,” Nucl. Instrum. Meth., 18, 19, 200–228 (1962).

    ADS  Google Scholar 

  27. M. M. Gordon, “Computation of closed orbits and basic focusing properties for sector-focused cyclotrons and the design of “Cyclops”,” Part. Accel., 16, 39–62 (1984).

    Google Scholar 

  28. A. S. Vorozhtsov et al., “Magnetic field of the VINCY cyclotron,” in Proc. 35th European Cyclotron Progress Meeting (ECPM 2006) (Nice, France, 2006).

    Google Scholar 

  29. S. B. Vorozhtsov, Doctoral Dissertation in Math. and Phys. (JINR, Dubna, 1986).

    Google Scholar 

  30. E. P. Zhidkov, E. E. Perepelkin, and S. B. Vorozhtsov, “Modeling of spiral inflector and centering of orbits in compact cyclotron,” Mat. Mod., 21 (1), 3–11 (2009).

    MATH  Google Scholar 

  31. F. Chautard, “Beam dynamics for cyclotrons,” in CAS Proceedings (2005), Vol. 12, p. 209.

    Google Scholar 

  32. Yu. N. Grigoriev, V. A. Vshivkov, and M. P. Fedoruk, Numeric Modeling by Particle-in-Cell Methods, (Izd. SO RAN, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  33. A. S. Roshal', “Fast Fourier transform in computational physics,” Izv. vuzov. Radiofiz., 19 (10), 1425–1454 (1976).

    Google Scholar 

  34. F. Assous, P. Degond, and J. Segre, “A particle-tracking method for 3D electromagnetic PIC codes on unstructured meshes,” Comput. Phys. Commun. 72, 105–114 (1992).

    Article  ADS  Google Scholar 

  35. E. Sonnedrucker, J. J. Ambrosiano, and S. T. Branon, “A finite element formulation of the Darwin PIC model on unstructured grids,” J. Comput. Phys. 121, 281–297 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  36. P. Heikkinen, “Injection and extraction for cyclotrons,” CAS, CERN 94-01, 2, 819 (1994).

    Google Scholar 

  37. V. Nuttens, M. Abs, J.-L. Delvaux, Y. Jongen, W. Kleeven, M. Mehaudens, L. Medeiros Romao, T. Servais, T. Vanderlinden, and P. Verbruggen, “Cyclotron vacuum model and H-gas stripping losses,” in Proc. CYCLOTRONS 2010 (Lanzhou, China, 2010).

    Google Scholar 

  38. Y. Nakai et al., “Cross sections for charge transfer of hydrogen atoms and ions colliding with gaseous atoms and molecules,” Atomic Data and Nuclear Data Tables, 37, 69–101 (1987).

    Article  ADS  Google Scholar 

  39. A. Poncet, in Proc. CERN Accelerator School: Vacuum Technology (Snekersten, Denmark, 1999), pp. 165–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Smirnov.

Additional information

Original Russian Text © V.L. Smirnov, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, V.L. Computer modeling of a compact isochronous cyclotron. Phys. Part. Nuclei 46, 940–955 (2015). https://doi.org/10.1134/S1063779615060040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615060040

Keywords

Navigation