Skip to main content

Advertisement

Log in

The Cyclotron and Its Modeling

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The review is devoted to accelerators of the cyclotron type. Systematization of cyclotrons and description of their basic structural units are presented, and theoretical basics of cyclotron physics are given. The numerical modeling techniques used to design cyclotrons are described, which include the methods for beam dynamics analysis and the algorithms applied for their software implementation. A survey of existing program codes intended for the analysis of particle dynamics in cyclotron facilities is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.
Fig. 46.
Fig. 47.
Fig. 48.
Fig. 49.
Fig. 50.
Fig. 51.
Fig. 52.
Fig. 53.
Fig. 54.
Fig. 55.
Fig. 56.
Fig. 57.
Fig. 58.
Fig. 59.
Fig. 60.
Fig. 61.
Fig. 62.
Fig. 63.
Fig. 64.
Fig. 65.
Fig. 66.
Fig. 67.
Fig. 68.
Fig. 69.
Fig. 70.
Fig. 71.
Fig. 72.
Fig. 73.
Fig. 74.
Fig. 75.
Fig. 76.
Fig. 77.

Similar content being viewed by others

REFERENCES

  1. V. N. Zabaev, Application of Accelerators in Science and Industry (Tomsk Polytechnic University Publ. House, Tomsk, 2008).

    Google Scholar 

  2. E. O. Lawrence and M. L. Livingston, Phys. Rev. 37, 1707 (1931).

    Google Scholar 

  3. W. B. Mann, The Cyclotron (Methuen & Co, London, 1953).

    Google Scholar 

  4. J. J. Livingood, Principles of Cyclic Particle Accelerators (D. Van Nostrand Co, London, 1961).

    MATH  Google Scholar 

  5. H. Bruck, Circular Particle Accelerators (Los Alamos Scientific Laboratory, Los Alamos N.M., 1972).

    Google Scholar 

  6. A. A. Kolomensky and A. N. Lebedev, Theory of Cyclic Accelerators (Fizmatlit, Moscow, 1962) [in Russian].

    Google Scholar 

  7. M. S. Livingston, “Part I. History of the cyclotron,” Physics Today 12, 18–23 (1959).

    Article  Google Scholar 

  8. V. I. Veksler, “A new method of the acceleration of relativistic particles,” Doklady Akad. Nauk SSSR 43, 346 (1944).

    Google Scholar 

  9. L. M. Onishchenko, “Cyclotrons. A survey,” Phys. Part. Nucl. 39, 950 (2008).

    Article  Google Scholar 

  10. D. J. Clark, “Ion sources for cyclotrons,” in Proceedings of the 9th International Conference on Cyclotrons and their Applications (Caen, France, 1981).

  11. I. Braun, Physics and Technology of Ion Sources (WILEY-VCH, Verlag GmbH & Co. KGaA, Weinheim, 2004).

  12. R. Scrivens, “Electron and ion sources for particle accelerators,” presented at CAS (CERN Accelerator School) Intermediate Course on Accelerator Physics (Zeuthen, Germany, 15–26 September 2003). CERN-2006-002. P. 495-504.

  13. T. A. Forrester and G. D. Alton, “Large ion beams: Fundamentals of generation and propagation,” Physics Today 42, 77 (1989).

    Article  Google Scholar 

  14. R. Geller, “Electron cyclotron resonance sources: Historical review and future prospects,” Rev. Sci. Instrum. American Institute of Physics 69, 1302–1310 (1998).

    Article  ADS  Google Scholar 

  15. C. M. Lyneis, “ECR ion sources for accelerators,” in Proceedings of the 13th International Conference on Cyclotrons and their Applications (Vancouver, British Columbia, Canada, 1992), p. 301.

  16. N. Anger, “Ion sources,” GSI, Darmstadt, Germany, https://inis.iaea.org/collection/NCLCollectionStore/_ Public/26/001/26001458.pdf.

  17. D. Naik et al., “Design of a ‘‘two-ion source’’ charge breeder using ECR ion source in two frequency mode,” Nucl. Instrum. Methods Phys. Res., Sect. A 547, 270–278 (2005).

    Google Scholar 

  18. D. Leitner, D. Todd, and D. Winklehner, Fundamentals of Ion Sources. Multicusp Ion Sources I (USPAS, University of Texas, 2016).

  19. R. F. Welton et al., “H-ion source developments at the SNS,” Rev. Sci. Instrum. 79, 02C721 (2008).

  20. M. Seidel, “Injection and extraction in cyclotrons,” presented at CERN Accelerator School—Specialised Course Erice (12 March 2017).

  21. W. Kleeven, “Injection and extraction for cyclotrons,” presented at CERN Accelerator School and KVI: Specialised CAS Course on Small Accelerators (Zeegse, The Netherlands, 24 May–2 Jun 2005), p. 271–296.

  22. T. Kuo, R. Baartman, L. Root, B. Milton, R. Laxadal, D. Yuan, K. Jayamanna, P. Schmor, G. Dutto, M. Dehnel, and K. Erdman, “A comparison of two injection line matching sections for compact cyclotrons,” IEEE 3, 1858 (1995).

  23. J. L. Belmot and J. L. Pabot, “Study of axial injection for the Grenoble cyclotron,” IEEE Trans. Nucl. Sci. NS-13, 191–193 (1966).

    Article  ADS  Google Scholar 

  24. J. H. Kim, D.H. Lee, K.S. Chun, and B.H. Oh, “Design study for a spiral inflector in a cyclotron,” J. of the Korean Physical Society 46, 1102–1108 (2005).

    Google Scholar 

  25. R. Baartman and W. Kleeven, “A canonical treatment of the spiral inflector for cyclotrons,” Part. Accel. 41, 41–53 (1993).

    Google Scholar 

  26. P. Heikkinen, “Injection and extraction for cyclotrons,” CAS, CERN 94-01 II, 819 (1994).

  27. L. A. C. Piazza et al., “Design of the flat-top acceleration cavity for the LNS superconducting cyclotron,” in Proceedings of EPAC2006 (Edinburgh, Scotland, 2006).

  28. S. B. Vorozhtsov, V. L. Smirnov, and A. Goto, “Modification of the central region in the RIKEN AVF cyclotron for acceleration at the h = 1 RF harmonic,” in Proceedings of the 19th International Conference, CYCLOTRONS 2010 (Lanzhou, China, 2010).

  29. G. Chen et al., “Research and development of RF system for SC200 cyclotron,” in. Proceedings of IPAC2018 (Vancouver, BC, Canada, 2018).

  30. W. Kleeven et al., “Recent development and progress of IBA cyclotrons,” Nucl. Instrum. Methods Phys. Res. Sect. B 269, 2857–2862 (2011).

    Article  ADS  Google Scholar 

  31. Y. Jongen et al., “Radio frequency system of the cyclotron C400 for hadron therapy,” in Proceedings of the 18th International Conference CYCLOTRONS 2007 (Giardini Naxos, Messina, Italy, 2007).

  32. P. V. Bogdanov et al., “Compact CC-18/9, CC-12, and MCC-30/15 cyclotrons for the production of medical radioisotopes,” Tech. Phys. 56, 1447–1462 (2011).

    Article  Google Scholar 

  33. E. Pearson, W. Kleeven, J. Van de Walle, and S. Zaremba, “The new IBA superconducting synchrocyclotron (S2C2): From modeling to reality,” in Proceedings of 11th International Topical Meeting or Nuclear Applications of Accelerators (Bruges, Belgium, 2013).

  34. H. R. Fitze et al., “Development of a new high power cavity for the 590 MeV cyclotron”, in Proceedings of PAC (New York, 1999).

  35. E. M. Syresin, Proton and Ionic Therapy (JINR publishing house, Dubna, 2015) [In Russian].

    Google Scholar 

  36. B. N. Gikal, A. V. Tikhomirov, M. V. Khabarov, and O. A. Chernyshev “Vacuum system of the heavy ion cyclotron complex DC-60,” Phys. Part. Nucl. Lett. 5, 392–404 (2008).

    Article  Google Scholar 

  37. Hollow copper conductors, Luvata corp. http:// www.Luvata.com.

  38. V.V. Schmidt, Introduction to the Physics of Superconductors, 2nd ed. (MTsNMO, Moscow, 2000) [In Russian].

  39. G. L. Sabbi, “Future of high field superconducting magnets,” in Proceedings of CYCLOTRONS’19 (Cape Town, South Africa, 2019).

  40. M. Wilson, “Superconductivity for Accelerators,” presented in JUAS Lectures. February 2015.

  41. A. Godeke et al., “Research at Varian on applied superconductivity for proton therapy,” Supercond. Sci. Technol. 33, 064001 (2020).

    Article  ADS  Google Scholar 

  42. M. B. Kravchenko “System analysis of the operation of the Gifford-McMahon cryocooler,” Tekhnicheskie gazy 5, 41 (2015).

  43. M. A. Bak and Yu. F. Romanov, Neutron (Atomizdat, Moscow, 1960) [In Russian].

    Google Scholar 

  44. Accelerators. Collected Papers, Ed. B.N. Yablokov (Gosatomizdat, Moscow, 1962) [In Russian].

    Google Scholar 

  45. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Springer-Verlag, Inc., New York, 1979).

    Book  MATH  Google Scholar 

  46. V. P. Mashkovich and A. V. Kudryavtseva, Protection Against Ionizing Radiations. Directory (Energoatomizdat, Moscow, 1995) [In Russian].

    Google Scholar 

  47. D. L. Broder, L. N. Zaitsev, M. M. Komochkov, V. V. Malkov, and V. S. Sychen, Concrete in the Protection of Nuclear Installations (Atomizdat, Moscow, 1960) [in Russian].

    Google Scholar 

  48. E. G. Komar, Basics of Accelerator Technology (Atomizdat, Moscow, 1975) [in Russian].

    Google Scholar 

  49. T. L. Hart, D. J. Summers, and K. Paul, “Magnetic field expansion out of a plane: Application to cyclotron development,” in Proceedings of PAC’11 (New York, USA, 2011).

  50. D. W. Kerst and R. Serber, “Electronic orbits in the induction accelerator,” Phys. Rev. 60, 53 (1941).

    Article  ADS  Google Scholar 

  51. J. Munilla, “Compact accelerators for radioisotope production: The AMIT project,” in Academia-Industry Matching Event on Superconductivity for Accelerators for Medical Applications (CIEMAT, Madrid, 2016).

    Google Scholar 

  52. L. H. Thomas, Phys. Rev. 54, 580 (1938).

    Article  ADS  Google Scholar 

  53. M. K. Craddock, “AG focusing in the Thomas cyclotron of 1938,” in Proceedings of PAC09 (Vancouver, BC, Canada, 2009).

  54. A. A. Kolomensky, V. A. Petukhov, and M. S. Rabinovich, “New accelerator—ring phasotron,” FIAN Report. USSR, 1953.

  55. E. L. Kelly, R. V. Pyle, R. L. Thornton, J. R. Richardson, and B. T. Wright, Rev. Sci. Instrum. 27, 492 (1956).

    Article  ADS  Google Scholar 

  56. K. R. Symon, D. W. Kerst, et al., Phys. Rev. 103, 1837 (1956).

    Article  ADS  Google Scholar 

  57. V. P. Dmitrievsky et al, Preprint 1431, JINR (Joint Institute for Nuclear Research, Dubna, 1963).

  58. W. M. Schulte, “The theory of accelerated particles in AVF cyclotrons,” Part. Accel. (E1600). Netherlands, 24 November 1978. 188 p. INIS-MF—4849.

  59. L. C. Teng, “Linear theory of betatron oscillations in sectorial cyclotrons,” Rev. Sci. Instrum. 27, 1051 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  60. H. L. Hagedorn and N. F. Verster, “Orbits in an AVF cyclotron,” Nucl. Instrum. Methods 18, 200–228 (1962).

    ADS  Google Scholar 

  61. M. M. Gordon, “Computation of closed orbits and basic focusing properties for sector-focused cyclotrons and the design of “CYCLOPS”," Part. Accel. 16, 3962 (1984).

    Google Scholar 

  62. A. A. Kolomensky, Physical Foundations of Charged Particle Acceleration Methods (MGU, Moscow, 1980) [In Russian].

    Google Scholar 

  63. R. Li, “Discussion of phase space and emittances,” in Proceedings of NAPAC’16 (Chicago, IL, USA, 2016).

  64. H. Bradt and S. Olbert, Liouville’s Theorem, Suppl. to Ch. 3 of Astrophysical Processes (Cambridge Univ. Press. 2008).

  65. V. P. Dzhelepov and V. P. Dmitrievsky, “Phasotron and the principle of autophasing,” Phys. Part. Nucl. 26, 1119 (1995).

    Google Scholar 

  66. L. M. Onischenko, “JINR phasotron,” in Proceedings of PAC1987, p. 878–882.

  67. W. Kleeven, M. Abs, E. Forton, S. Henrotin, Y. Jongen, V. Nuttens, Y. Paradis, E. Pearson, S. Quets, J. Van de Walle, P. Verbruggen, S. Zaremba, M. Conjat, J. Mandrillon, and P. Mandrillon, “The IBA superconducting synchrocyclotron project S2C2,” in Proceedings of 20th Int. Conference on Cyclotrons and their Appl. (Vancouver, BC, Canada, 2013).

  68. W. Kleewen, “The superconducting synchrocyclotron project S2C2,” presented at Joint Universities Accelerator School (CERN, Switzerland, 2014).

    Google Scholar 

  69. B. Lundstrom and B. Holmgren, “The RF system of the Gustaf Werner cyclotron/synchrocyclotron,” in Proceedings of the 13th International Conference on Cyclotrons and their Applications (Vancouver, BC, Canada, 1992).

  70. Ch. Ohmori, F. Meot, and J. Pasternak, “RF system for RACCAM FFAG,” in Proceedings of PAC09 (Vancouver, BC, Canada, 2009).

  71. J.-B. Lagrange, D. Kelliher, S. Machida, C. Prior, and C. Rogers, “Status of FFAs (Modelling and existing/planned machines),” in Proceedings of CYCLOTRONS’19 (Cape Town, South Africa, 2019).

  72. A. A. Kolomensky, V. A. Petukhov and M. S. Rabinovich, Lebedev Ph. I. Report. 1953.

  73. T. Ohkawa, Bull. Phys. Soc. Jpn. (1953).

  74. F. T. Cole, R. O. Haxby, L. W. Jones, C. H. Pruett, and K. M. Terwilliger, “Electron model fixed field alternating gradient accelerator,” Rev. Sci. Instrum. 28, 403–420 (1957).

    Article  ADS  Google Scholar 

  75. T. Adachi et al., “A 150MeV FFAG synchrotron with ”Return-Yoke Free” magnet," in Proceedings of the 2001 PAC (Chicago, 2001).

  76. Y. Sato et al., in Proceedings of the EPAC 2000, p. 581.

  77. S. Antoine et al., “Principle design of a proton therapy, rapid-cycling, variable energy spiral FFAG,” Nucl. Instrum. Methods Phys. Res., Sect. A 602, 293–305 (2009).

    Google Scholar 

  78. T. Yokoi, “Status of Pamela: An UK particle therapy facility project using NS-FFAG,” International J. Mod. Phys. A 26, 1887–1902 (2011).

    Article  ADS  Google Scholar 

  79. V. L. Smirnov, N. S. Azaryan, and S. B. Vorozhtsov, “Preliminary parameter assessments of a spiral FFAG Accelerator for Proton Therapy,” in Proceedings of JINR Commun. E9-2013-99 (Dubna, 2013). p. 13.

  80. T. Planche et al., “Design of a prototype gap shaping spiral dipole for a variable energy proton therapy FFAG,” Nucl. Instrum. Methods Phys. Res., Sect. A 604, 435–442 (2009).

    Google Scholar 

  81. B. Qin et al., “Design of high-energy hadron FFAGs for ADSR and other applications,” in Proceedings of CYCLOTRONS 2010 (Lanzhou, China, 2010).

  82. S. J. Brooks, “Vertical orbit excursion FFAG accelerators with edge focusing,” in Proceedings of IPAC2012 (New Orleans, Louisiana, USA, 2012).

  83. S. J. Brooks, “Vertical orbit excursion FFAGs and other things,” in Proceedings of FFAG’11 Workshop (Oxford, 2011).

  84. V. I. Veksler, “A new method for accelerating relativistic particles,” Doklady Akad. Nauk SSSR 43, 346 (1944).

    Google Scholar 

  85. A. P. Grinberg, “The microtron,”. Sov. Phys. Usp. 4, 857–879 (1962).

    Article  ADS  Google Scholar 

  86. Yu. M. Tsipenyuk, Fundamental and Applied Research on the Microtron (MAIK “Science/Interperiodica”, Moscow, 2009).

  87. A. S. Alimov, A. S. Chepurnov, O. V. Chubarov, et al., Preprint IYaF MGU-93-9/301 (Skobeltsyn Institute of Nuclear Physics of Moscow State University, Moscow, 1993).

    Google Scholar 

  88. V. I. Shvedunov, R. A. Barday, D. A. Frolov, et al., Nucl. Instrum. Methods A 511, 346 (2004).

    Article  ADS  Google Scholar 

  89. H. Herminghaus and H. Euteneuer, Nucl. Instrum. Methods 163, 299 (1979).

    Article  ADS  Google Scholar 

  90. K. H. Kaiser, in Proceedings of Conference on Future Possibilities for Electron Accelerators (Charlottesville, 1979).

  91. K. A. Belovintsev et al., Preprint № 88, FIAN (Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 1984).

  92. T. Hae, T. Aoki, C. Hori, H. Nakashima, F. Noda, T. Seki, K. Hiramoto, “Compact cotangential orbit accelerator for proton therapy,” in Proceedings of CYCLOTRONS’19 (Cape Town, South Africa, 2019).

  93. L. A. Sarkisyan, “Possibility of acceleration of protons for energies above E 0 in an isochronous cyclotron,” At. Energy 30, 466 (1971).

    Google Scholar 

  94. T. J. Zhang, S. An, T. J. Bian, F. P. Guan, M. Li, S. Pei, C. Wang, F. Wang, and Z. G. Yin, “A new solution for cost effective, high average power (2 GeV, 6 MW) proton accelerator and its R&D activities,” in Proceedings of Cyclotrons’19 (Cape Town, South Africa, 2019).

  95. W. Joho, “Cyclotron specials,” presented at Accelerator Talks (PSI, Switzerland, 2014).

    Google Scholar 

  96. N. M. King and W. Walkinshaw, “Spiral ridge cyclotron particle dynamics applied to conversion of the HARWELL synchrocyclotron,” Nucl. Instrum. 2, 287–298. (1958).

    Article  Google Scholar 

  97. Chao Hung-Chun, “Emittance Evolution in Crossing Walkinshaw Resonance and Envelope Dynamics Simulations,” PhD Thesis, 2015.

  98. A. Schoch, Theory of Linear and Non-linear Perturbations of Betatron Oscillations in Alternating-Gradient Synchrotrons, in CERN Yellow Reports: Monographs https://doi.org/10.5170/CERN-1957-021, CERN-57-21. 1958, 153 p.

  99. M. M. Gordon, “The electric gap-crossing resonance in a three-sector cyclotron,” Nucl. Instrum. Methods 18, 268–280 (1962).

    Article  ADS  Google Scholar 

  100. H. Yao, R. Baartman, Y.-N. Rao, T. Zhang, and Y. Lin, “Gap-crossing resonance in CYCIAE-100 cyclotron,” in Proceedings of CYCLOTRONS 2007 (Giardini Naxos, Italy, 2007).

  101. V. Smirnov, S. Vorozhtsov, and J. Vincent, “Design study of an ultra-compact superconducting cyclotron for isotope production,” Nucl. Instrum. Methods Phys. Res., Sect. A 763, 6–12 (2014).

    Google Scholar 

  102. Ch. K. Allen and N. D. Pattengale, “Theory and technique of beam envelope simulation,” Los Alamos National Laboratory Report No. LA-UR-02-4979.

  103. E. E. Perepelkin, N. P. Repnikova, and N. G. Inozemtseva, “An exact solution of the space charge problem for the motion of a spherically symmetric beam in a homogeneous electric field,” Mathematical notes 98, 448–453 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  104. V. S. Pandit, “Transport & Acceleration of space charge dominated beam with cyclotron,” presented at Joint Accelerator School-08 (Indore, 2008).

  105. I. M. Kapchinsky and V. V. Vladimirsky, “Limitations of proton beam current in a strong focusing linear accelerator associated with the beam space charge,” in Proceedings of International Conference on High-Energy Accelerators and Instrumentation (CERN, 1959), pp. 274–288.

  106. Ch. Prior, “Beam dynamics with space charge,” presented at CERN Accelerator School. High Power Hadron Machines (Bilbao, Spain, 2011).

  107. F. J. Sacherer, “RMS envelope equations with space charge,” IEEE CERN Internal Report SI/DL/70-12 (1971).

  108. M. Ferrario, M. Migliorati, and L. Palumbo, “Space charge effects,” in Proceedings of the CAS-CERN Accelerator School: Advanced Accelerator Physics (Trondheim, Norway, 19–29 August 2013). Herr W. (Ed.) CERN-2014-009. (CERN, Geneva, 2014).

  109. S. Adam, “Space charge effects in cyclotrons—from simulations to insights,” in Proceedings of CYCLOTRONS’95 (Cape Town, South Africa, 1995).

  110. J. J. Yang, A. Adelmann, M. Humbel, M. Seidel, and T. J. Zhang, “Beam dynamics in high intensity cyclotrons including neighboring bunch effects: Model, implementation, and application,” Phys. Rev. ST Accel. Beams 13, 064201 (2010).

    Article  ADS  Google Scholar 

  111. A. Goto, “Mechanism of formation of a round beam by space-charge forces in cyclotrons,” RIKEN Accel. Prog. Rep. 44. 2011.

  112. A. A. Samarsky and A. P. Mikhailov, Mathematical modeling. Ideas. Methods. Examples. 2nd ed., Rev. (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  113. www.operafea.com.

  114. http://www.ansys.com.

  115. A. N. Dubrovin, User’s Guide MERMAID: Magnet Design in Two and Three Dimensions (SIM Limited, Novosibirsk, 1994), pp. 3–60.

    Google Scholar 

  116. S. Sytchevsky et al., “Numerical technology for design, development and measurements of magnet system in cyclotrons,” in Proceedings of XXXV European Cyclotron Progress Meeting (ECPM 2006) (November 2–4, 2006).

  117. K. Halbach and R. F. Holsinger, “SUPERFISH: A computer program for evaluation of RF cavities with cylindrical symmetry,” Part. Accel. 7, 213–222 (1976).

    Google Scholar 

  118. https://www.cst.com.

  119. https://www.3ds.com.

  120. E. R. Forringer, “Phase Space Characterization of an Internal Ion Source for Cyclotrons,” PhD thesis (Michigan State University, 2004).

  121. D. A. Ovsyannikov, Simulation and Optimization of the Dynamics of Charged Particle Beams. (Leningrad. Univer., 1990) [in Russian].

    MATH  Google Scholar 

  122. Y. Batygin, “Low energy beam transport for intense beams, high intensity RF linear accelerators,” in Proceedings of U.S. Particle Accelerator School (Albuquerque, New Mexico, 23–27 June 2014).

  123. S. Humphries, Jr., “Charged particle beams,” presented at Department of Electrical and Computer Engineering University of New Mexico, 2002.

    Google Scholar 

  124. V. L. Smirnov and S. B. Vorozhtsov, “Axial injection to a compact cyclotron with high magnetic field,” in Proceedings of the XXIV Russian particle accelerators conference RUPAC 2014 (Obninsk, Russia, 2014).

  125. A. E. Val’kov and A. K. Zaichenko, “Method of cyclotron U-240 isochronous field calculation,” Nucl. Phys. At. Energy 13, 101–107 (2012).

    Google Scholar 

  126. N. Kazarinov, V. Kazacha, and O. Borisov, “Determination of isochronous field using calculated map of magnetic field in cyclotron median plane,” in Proceedings of CYCLOTRONS 2010 (Lanzhou, China, 2010).

  127. J. L. Ristic-Djurovic and V. Vujovic, “Comparative analysis of methods for isochronous magnetic-field calculation,” IEEE Trans. Nucl. Sci. 55, 3531–3538 (2008).

    Article  ADS  Google Scholar 

  128. V. Smirnov, S. Vorozhtsov, A. Goto, S. Hojo, T. Honma, and K. Katagiri, “Quantitative simulation of NIRS cyclotron,” in Proceedings of IPAC’12 (New Orleans, USA, 2012).

  129. I. Podadera et al., “Beam diagnostics for commissioning and operation of a novel compact cyclotron for radioisotope production,” in Proceedings of IBIC2013 (Oxford, UK, 2013).

  130. V. I. Zamolodchikov, “Cyclotron and phasotron with magnetic field variation for energies up to 1 GeV,” Doctoral dissertation (JINR, Dubna, 1971).

  131. V. L. Smirnov, “Design of the central zone of a compact cyclotron,” Phys. Part. Nucl. Lett. 16, 40–55 (2019).

    Google Scholar 

  132. C. Wouters, C. Baumgarten, S. Forss, V. Vrankovic, H. Zhang, and M. Schippers, “Central region studies of the 250 MeV SC cyclotron for proton therapy,” in Proceedings of ECPM 2009 (Groningen, Netherlands, 2009).

  133. H. G. Blosser, “Optimization of the cyclotron central region for the nuclear physics user,” in Proceedings of the Fifth International Cyclotron Conference (Oxford, England, 1969).

  134. G. Bellomo, “The central region for compact cyclotrons,” in Proc of CYCLOTRONS’89 (Berlin, Germany, 1989), pp. 325–334.

  135. J.-L. Belmont, “Ion transport from the source to first cyclotron orbit,” // NUKLEONIKA 48 (Suppl. 2), S13–S20 (2003).

    Google Scholar 

  136. J.M. van Nieuwland and N. Hazewindus, “Some Aspects of the Design of a Cyclotron Central Region,” Philips Res. Repts. 29, 528–559 (1974).

    Google Scholar 

  137. W. Kleeven and S. Zaremba, “Cyclotrons: Magnetic Design and Beam Dynamics,” arXiv:1804.08861, 2018.

  138. W. D. Kilpatrick, “Criterion for vacuum sparking designed to include both RF and DC,” Rev. Sci. Instrum. 28, 824 (1957).

    Article  ADS  Google Scholar 

  139. S. B. Vorozhtsov, “Computer simulation of the magnetic system and beam dynamics in accelerators with spatial variation of the magnetic field,” Doctoral dissertation (Dubna, Russia, 1986).

  140. Lj. S. Milinkovic, K. M. Subotic, and E. Fabrici, “Properties of centered accelerated equilibrium orbits,” Nucl. Instrum. Methods Phys. Res., Sect. A 273, 87–96 (1988).

    Google Scholar 

  141. F. Chautard, “Beam dynamics for cyclotrons,” CAS Proceedings 12, 209 (2005).

  142. M. M. Gordon and T. A. Welton, “Computation methods for AVF cyclotron design studies,” Oak Ridge National Lab. Report ORNL-2765, 1959.

  143. E. P. Zhidkov, E. E. Perepelkin, and S. B. Vorozhtsov, “Modeling of the spiral inflector and the orbit centering in a compact cyclotron,” Mathematical Models and Computer Simulations 1, 704–711 (2009).

    Article  MATH  Google Scholar 

  144. T. A. Welton, Nucl. Sci. Ser. Rep. 26, NAS-NRC-656. (Washington, 1959), p. 192.

  145. M. Gordon, “Longitudinal space charge effect and energy resolution,” in Proceedings of the 5th International Cyclotron Conference (Oxford, 1969).

  146. Yu. N. Grigor’ev, V. A. Vshivkov, and M. P. Fedoruk, Numerical Modeling by Method of Particles in Cells (SO RAN, Novosibirsk, 2004) [In Russian].

    Google Scholar 

  147. A. S. Roshal’, “The fast Fourier transform in computational physics (review),” Radiophysics and Quantum Electronics 19, 997–1020 (1976).

    Article  ADS  Google Scholar 

  148. F. Assous, P. Degond, and J. Segre, “A particle-tracking method for 3D electromagnetic PIC codes on unstructured meshes,” Comput. Phys. Commun. 72, 105–114 (1992).

    Article  ADS  Google Scholar 

  149. E. Sonnendrücker, J. J. Ambrosiano, and S. T. Brandon, “A finite element formulation of the Darwin PIC model for use on unstructured grids,” J. Comput. Phys. 121, 281–297 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  150. G. I. Dudnikova, D. V. Romanov, and M. P. Fedoruk, “On particle models on the unstructured grids,” Vychisl. Tekhnol. 3, 30–46 (1998).

    MATH  Google Scholar 

  151. Yu. Ya. Lembra, “Methods for extracting a beam from a synchrocyclotron,” Sov. Phys. Usp. 6, 143–156 (1963).

    Article  ADS  Google Scholar 

  152. V. Nuttens, M. Abs, J.-L. Delvaux, Y. Jongen, W. Kleeven, M. Mehaudens, Romao L. Medeiros, T. Servais, T. Vanderlinden, and P. Verbruggen, “Cyclotron Vacuum Model and H- Gas Stripping Losses” in Proceedings of CYCLOTRONS 2010 (Lanzhou, China, 2010), pp. 200–202.

  153. Y. Nakai et al., “Cross sections for charge transfer of hydrogen atoms and ions colliding with gaseous atoms and molecules,” At. Data and Nuc. Data Tables 37, 69–101 (1987).

    Article  ADS  Google Scholar 

  154. A. Poncet, in Proceedings of CERN Accelerator School: Vacuum Technology (Snekersten, Denmark, 1999), pp. 165–176.

  155. M. N. El-Shazly et al., “Beam loss due to the charge exchange with the residual gas in the FLNR heavy ion cyclotrons,” in Proceedings of EPAC-98 (Stockholm, 1998), p. 2199.

  156. A. Tikhomirov et al., “Computer modeling of the beam transmission efficiency dependent on the charge exchange with the residual gas for the CI-100 cyclotron,” in Proceedings of the 6th International Computational Accelerator Physics (ICAP) Conference (Darmstadt, Germany, 2000).

  157. O. V. Karamyshev, G. A. Karamysheva, and G. M. Skripka, Preprint P9-2011-34, JINR (Joint Institute for Nuclear Research, Dubna, 2011).

    Google Scholar 

  158. T. Zhang et al., “Beam loss by Lorentz stripping and vacuum dissociation in a 100 MeV compact H-cyclotron,” in Proceedings of PAC09 (Vancouver, BC, Canada, 2009).

  159. G. M. Stinson, “Electric dissociation of H-ions by magnetic fields,” Nucl. Instrum. Methods 74, 333–341 (1969).

    Article  ADS  Google Scholar 

  160. J. R. Alonso, “High power, high energy cyclotrons for decay-at-rest neutrino sources: The DAEδALUS project,” in Proceedings of the DPF-2011 Conference (Providence, RI, August 8–13, 2011).

  161. V. L. Smirnov, “Computer codes for beam dynamics analysis of cyclotronlike accelerators,” Phys. Rev. ST Accel. Beams 20, 124801 (2017).

    Article  ADS  Google Scholar 

  162. Y.-N. Rao and R. Baartman, “50 years of cyclotrons designed using CYCLOPS,” in Proceedings of FFAG’13 (September 21–24, 2013).

  163. J. R. Richardson, E. W. Blackmore, G. Dutto, C. J. Kost, G. H. Mackenzie, and M. K. Craddock, “Production of simultaneous, variable energy beams from the TRIUMF cyclotron,” in Proceedings of PAC (1975).

  164. K. Makino and M. Berz, “COSY INFINITY Version 9,” Nucl. Instrum. Methods Phys. Res., Sect. A 558, 346–350 (2006).

    Google Scholar 

  165. http://bt.pa.msu.edu/index_cosy.htm.

  166. C. Johnstone, M. Berz, K. Makino, S. Koscielniak, and P. Snopok, “Advances in nonlinear nonscaling FFAGs,” Int. J. Mod. Phys. A 26, 1690–1712 (2011).

    Article  ADS  Google Scholar 

  167. A. Adelmann, A. Gsell, C. Kraus, Y. Ineichen, S. Russell, Y. Bi, C. Wang, J. Yang, H. Zha, S. Sheehy, C. Rogers, and C. Mayes, The OPAL Framework. Version 1.1.9. User’s Reference Manual (PSI Report PSIPR-08-02, 2013).

  168. http://h5part.web.psi.ch/.

  169. J. J. Yang, A. Adelmann, M. Humbel, M. Seidel, and T. J. Zhang, “Beam dynamics in high intensity cyclotrons including neighboring bunch effects: Model, implementation and application,” Phys. Rev. ST Accel. Beams 13, 064201 (2010).

    Article  ADS  Google Scholar 

  170. T. Zhang, H. Yao, J. Yang, J. Zhong, and S. An, “The beam dynamics study for the CYCIAE-100 cyclotron,” Nucl. Instrum. Methods Phys. Res., Sect. A 676, 90–95 (2012).

    Google Scholar 

  171. F. Meot, ZGOUBI User’s Guide (Brookhaven National Laboratory, C-AD/AP/470, October 25, 2012).

  172. Sourceforge.net.

  173. A. Calanna, J. R. Alonso, L. Calabretta, J. M. Conrad, F. Meot, M. Haj Tahar, and M. Shaevitz, Injection and Extraction from the Superconducting Ring Cyclotron for DAEδALUS Experiment (LNL Report. 2014).

  174. T. I. Arnette, Program CYCLONE (Michigan State University Internal Report, 1966).

  175. B. F. Milton, CYCLONE VERS. 8.4 TRI-DN-99-4 (TRIUMF, Vancouver, BC, Canada, June 1999).

  176. MSU NSCL Accelerator Group, Z3CYCLONE Instruction Manual Version 4.1. January 1996.

  177. H. W. Kim, Y. S. Lee, S. Y. Jung, J. C. Lee, and J. S. Chai, “Design Study of a 250 MeV isochronous cyclotron for proton therapy,” IEEE Trans. Appl. Supercond. 26 (2016).

  178. mathworks.com.

  179. A. A. Glazov, V. V. Kalinichenko, G. A. Karamysheva, and O. E Lisenkova, “Program complex for cyclotron beam dynamic simulations,” in Proceedings of the 19th Russian Particle Accelerator Conference (2004), pp. 165–167.

  180. G. Karamysheva, S. Gurskiy, O. Karamyshev, N. Morozov, D. Popov, E. Samsonov, G. Shirkov, S. Shirkov, G. Trubnikov, Y. Bi, G. Chen, Y. Chen, K. Ding, H. Feng, J. Li, Y. Song, Y. Xie, Q. Yang, and J. Zheng, “Compact superconducting cyclotron SC200 for proton therapy,” in Proceedings of the 21st International Conference on Cyclotron and their Appl. (Zurich, Switzerland, 2016).

  181. D. Battaglia, L. Calabretta, D. Campo, M. Maggiore, L. Piazza, and D. Rifuggiato, “New design tools for a cyclotron central region,” in Proceedings of EPAC 2006 (Edinburgh, Scotland), pp. 2215–2217.

  182. L. A. C. Piazza, “SCENT 300 project status review,” in Proceedings of ECPM’09 (Groningen, Netherlands, October 28-31, 2009).

  183. W. Kleeven, M. Abs, E. Forton, V. Nuttens, E. Pearson, J. Van de Walle, and S. Zaremba, “AOC, a beam dynamics design code for medical and industrial accelerators at IBA,” in Proceedings of IPAC2016 (Busan, Korea, 2016), pp. 1902–1904.

  184. J. Van de Walle, M. Abs, M. Conjat, E. Forton, S. Henrotin, Y. Jongen, W. Kleeven, J. Mandrillon, P. Mandrillon, and P. Verbruggen, “The S2C2: From source to extraction,” in Proceedings of 21st International Conference on Cyclotron and their Appl. (Zurich, Switzerland, 2016).

  185. E. E. Perepelkin and S. B. Vorozhtsov, “CBDA—cyclotron beam dynamics analysis code,” in Proceedings of the 21st Russian Particle Accelerator Conference RuPAC2008 (Zvenigorod, Russia, 2008), pp. 40–42.

  186. E. E. Perepelkin, V. L. Smirnov, and S. B. Vorozhtsov, “The use of NVIDIA CUDA technology in modeling beam dynamics in charged particle accelerators,” Bulletin of the Peoples’ Friendship University of Russia, Series of Mathematics. Information sciences. Physics 1, 76–82 (2010).

    Google Scholar 

  187. V. L. Smirnov and S. B. Vorozhtsov, “SNOP—beam dynamics analysis code for compact cyclotrons,” in Proceedings of the 23th Russian Accelerator Conference RuPAC2012 (St. Petersburg, Russia, 2012), pp. 325–327.

Download references

ACKNOWLEDGMENTS

The author thanks S.B. Vorosztsov for his assistance in the systematization of the stated material and the discussion of its quality and concepts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Smirnov.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, V.L. The Cyclotron and Its Modeling. Phys. Part. Nuclei 52, 913–996 (2021). https://doi.org/10.1134/S106377962105004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377962105004X

Navigation