Skip to main content
Log in

Polymorphic transformations in Cu2Se, Ag2Se, AgCuSe and the role of partial cation-cation and anion-anion replacement in stabilizing their modifications

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

A review of studies of the crystalline structure of copper and silver chalcogenides is given. These materials have diverse physical properties making them promising in practical applications. Physical properties of crystals are determined by chemical composition, crystalline structure, and the influence of external conditions. In this work we carried out the analysis of published results on the crystalline structures of copper and silver chalcogenides at high and low temperatures. The inconsistency of published data on the crystal lattice parameters is noted. We also present our own results on the temperature dependence and the features of phase transitions in copper and silver chalcogenides with different composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Khansen and K. Anderko, Structures of Binary Alloys (Metallurgizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  2. F. Shank, Structures of Binary Alloys (Metallurgizdat, Moscow, 1973) [in Russian].

    Google Scholar 

  3. D. M. Chizhikov and V. A. Schastlivyi, Selen and Selenides (Nedra, Leningrad, 1968) [in Russian].

    Google Scholar 

  4. P. Rahlfs, “Uber die Kubischen Hochtempertur Modificationen der Sulfide, Selenide und Telluride des Silbers und des einwertingen Kupfers,” Z. Phys. Chem. B 31, 157–194 (1936).

    Google Scholar 

  5. L. Gulay, M. Daszkiewicz, O. Strok, and A. Pietraszko, “Crystal structure of Cu2Se,” Chem. Met. Alloys 4, 200 (2011).

    Google Scholar 

  6. X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, “Copper ion liquidlike thermoelectrics,” Nature Materials 11, 422 (2012).

    Article  ADS  Google Scholar 

  7. W. Borchert, “Gitterumwandlungen im system Cu2 − x Se,” Z. Kristallogr. 106, 5–24 (1945).

    Article  Google Scholar 

  8. P. Junod, “Relations entre la structure cristalline et les propriétés electroniques des combinaisons Ag2S, Ag2Se, Cu2Se,” Helv. Phys. Acta 32, 567–571 (1959).

    Google Scholar 

  9. I. W. Earley, “Description and synthesis of selenides minerals,” Am. Mineral. 35(5–6), 337–364 (1950).

    Google Scholar 

  10. N. A. Ibragimov, “Influence of uniaxial deformation on physical properties of Cu2S and Cu2Se,” Candidate’s Dissertation in Mathematics and Physics (Baku, 1985).

    Google Scholar 

  11. V. A. Kotovich and V. D. Frank-Kotenskii, Uch. Zap. LGU, Ser. Geol. 8, 1356 (1957).

    Google Scholar 

  12. A. L. N. Stevels and F. Jellinek, “Phase transitions in copper chalgogenides-I. The copper-selenium system,” Rec. Truv. Chem. 90(3), 273–279 (1971).

    Article  Google Scholar 

  13. M. Bellati and S. Lussana, “Azione della luce sulla conducibilita calorißca del selenio crislaliino,” Atti H. Islit. Veneto d. Sc. Ictl. ed arti, (6), 6 (1887); HH-H 35. Ausz. Z. 14, 505–525 (1987).

    Google Scholar 

  14. S. K. Sharma, “Structural transformation in thin films of binary alloys,” J. Mater. Sci. 4(3), 541–546 (1969).

    Article  Google Scholar 

  15. R. D. Heyding, “The copper-selenium system,” Can. J. Chem. 44(10), 1233–1249 (1966).

    Article  Google Scholar 

  16. Yu. G. Asadov, A. G. Babayev, Yu. I. Aliyev, F. G. Magerramova, and R. J. Aliyeva, “Thermal extensions and polymorphous transitions in Cu2 − x AxSe (x = 0; 0.2; 0.4, A = Ag, Zn), CuAgSe, CuAgSe0.5(S,Te)0.5 crystals,” Azerb. J. Phys. Fizika. 15(4), 89 (2009).

    Google Scholar 

  17. W. Hartwing, “The crystal structure of berzelanite (Cu2Se),” J. Mineral 4, 83–87 (1972).

    Google Scholar 

  18. O. S. Klymovych, O. F. Zmiy, L. D. Gulay, and T. A. Ostapyuk, “Phase diagram of the Ag2Se-As2Se3 system and crystal structure of the AgAs3Se5 compound,” Chem. Met. Alloys 1, 288–292 (2008).

    Google Scholar 

  19. J. Yu and H. Yun, “Reinvestigation of the low-temperature form of Ag2Se (Naumannite) based on single-crystal data,” Acta Cryst. E 67 (2011).

  20. L. S. Ramsdell, “The crystallography of acanthine, Ag2S,” Am. Mineral. 28, 401–425 (1943).

    Google Scholar 

  21. A. Boettcher, S. Hasse, and H. Treupel, “The structures and structural changes in the sulfides and selenides of silver and copper,” Z. Angew. Phys. 7, 478–487 (1955).

    Google Scholar 

  22. L. W. Constantinesch and A. Ichimesku, “L’etude des conditions d’obtention des couches orientees α-Ag2Se,” Rev. Poum. Phys. 18(10), 1197–1201 (1973).

    Google Scholar 

  23. L. W. Constantinesch, “Electron effective mass in the low temperature phase of silver selenides thick films,” Thin Solid Films 28(1), 73–79 (1983).

    Google Scholar 

  24. De R. Ridder and S. Amelinckx, “An electron microscopy study of the polymorphic transformation in Ag2Se (I),” Phys. Stat. Sol. A 18, 99–110 (1973).

    Article  ADS  Google Scholar 

  25. Y. Saito and M. Sato, “Orientation in Ag2Se polymorphic films produced by the reaction of silver films with selenium,” Thin Solid Films 79, 259–266 (1981).

    Article  ADS  Google Scholar 

  26. Y. Beer, G. Buseh, and C. Prohlich, “Warmeleit Faigkeit Electrische Leifahigeit. Hall-effect Termospanninung und Spezifische Woirme van Ag2Se,” Z. Naturforsch., A: Phys. Sci. 1701, 886–898 (1962).

    ADS  Google Scholar 

  27. P. Junod, “Relations entre la Structure Cristalline et les Proprietes Electroniques des combinaisons Ag2S, Ag2Se, Cu2Se,” Helv. Phys. Acta 32(6–7), 567–577 (1959).

    Google Scholar 

  28. N. Nuruev and R. Sharifzade, “On the conditions of formation and stability of tetragonal Ag2Se modification,” Neorg. Mater. 2, 73–78 (1972).

    Google Scholar 

  29. W. Klemm, H. Sodomann, and P. Langmesser, “Beitrage zur Kenntnis der Alkalimetallchalkogenide,” Z. Anorg. Allgem. Chem. 241, 281–293 (1939).

    Article  Google Scholar 

  30. L. B. Conn and R. G. Taylor, “Thermoelectric and crystallographic properties of Ag2Se,” J. Electrochem. Soc. 107, 977–986 (1960).

    Article  Google Scholar 

  31. Ts. L. Chzhou and Z. G. Pinsker, “Electron diffraction studies of thin AgSe films,” Crystallography, 7, 66–71 (1962).

    Google Scholar 

  32. R. Simon, “Preparation and thermoelectric properties of β-Ag2Se,” Adv. Energy Convers. 3, 481–505 (1963).

    Article  Google Scholar 

  33. A. Novoselova, “Studying the silver selenide-lead selenide system,” Izv. Acad. Nauk SSSR, Neorg. Mater. 3, 1010–1019 (1967).

    Google Scholar 

  34. S. K. Sharma and C. A. Wiegers, “The crystal structure of the low-temperature form of silver selenides,” Am. Mineral. 56, 1882 (1971).

    Google Scholar 

  35. N. G. Dhere and A. Goswami, “Growth of vapour phase deposits of Ag2Se and Ag2Te on single crystals,” Thin Solid. Films 5(3), 137–144 (1970).

    Article  ADS  Google Scholar 

  36. C. A. Wiegers, “The crystal structure of the low-temperature form of silver selenides,” Am. Mineral. 56, 1882–1898 (1971).

    Google Scholar 

  37. Yu. G. Asadov and G. A. Jabrailova, “Investigation of polymorphic transformations in Ag2Se,” Phys. Stat. Sol. (a) 12 K13 (1972).

    Article  ADS  Google Scholar 

  38. S. A. Aliev, Diffuse Phase Transitions in Semiconductors and High-Temperature Superconductors (Elm, Baku, 2007) [in Russian].

    Google Scholar 

  39. J. R. Cunter, N. Uyeda, and E. Suito, “Topotactic reaction of thin silver films with selenium,” J. Cryst. Growth 33, 337–352 (1973).

    Google Scholar 

  40. M. D. Banus, “Pressure dependence of the alpha-beta transition temperature silver selenides,” Science 147, 732–746 (1965).

    Article  ADS  Google Scholar 

  41. S. K. Sharma and G. L. Malhota, “Some observations on structural transformation of Ag2Se alloy films,” Phys. Lett. 9, 218 (1964).

    Article  ADS  Google Scholar 

  42. M. N. Agaev, Sh. M. Alekperova, and M. I. Zargarova, “Physico-chemical studying of the system Ag2Te-Cu2Te,” Dokl. Akad. Nauk Azerb. SSR 27(6), 15 (1971).

    Google Scholar 

  43. D. M. Trots, A. N. Skomorokhov, M. Knapp, and H. Fuess, “High-temperature behaviour of average structure and vibrational density of states in the ternary superionic compound AgCuSe,” Eur. Phys. J. B 51, 507–511 (2006).

    Article  ADS  Google Scholar 

  44. D. M. Trots, A. N. Skomorokhov, and M. Knapp, “High-temperature behaviour of average structure and vibrational density of states in the ternary superionic compound AgCuSe,” Eur. Phys. J. B 51, 507–512 (2006).

    Article  ADS  Google Scholar 

  45. V. N. Chebotin, V. N. Konev, and V. M. Berezin, “Chemical diffusion in nonstoichiometric solid solutions ((Cu1 − x Ag x + 6)2x , where x = Se, S),” Neorg. Mater. 20(9), 1662–1465 (1984).

    Google Scholar 

  46. R. A. Yakshybaev, N. N. Mukhammadeva, and V. N. Kopev, “Studying the phase states in Cu2Se-Ag2Se quasibinary system using high-temperature radiography,” in Abstr. III-rd All-Union Meeting on Chemistry and Technology of Chalcogenides and Chalcogenes (Karaganda, 1986), p. 269.

    Google Scholar 

  47. W. J. Earley, “Description and synthesis of selenides minerals,” Am. Mineral. 35(5–6), 345–364 (1950).

    Google Scholar 

  48. A. J. Frueh, G. K. Czamanste, and Ch. Knight, “The crystallography of eucairite, AgCuSe,” Zeit. Krist. 108, 389–396 (1957).

    Article  Google Scholar 

  49. Yu. G. Asadov and G. A. Jabrailova, “Investigation of structural transformations in Cu2Se,” Cryst. and Tech. 8(4), 509 (1973).

    Google Scholar 

  50. M. Kh. Balapanov, R. A. Yakshibaev, and U. Kh. Mukhamed’yanov, “Phenomena of ion transport in solid solutions of superionic conductors Cu2Se and Ag2Se,” Phys. Solid State 45(4), 634–638 (2003).

    Article  ADS  Google Scholar 

  51. S. A. Danilkin, A. N. Skomorokhov, A. Hoser, H. Fuess, V. Rajevac, and N. N. Bickulova, “Crystal structure and lattice dynamics of superionic copper selenide Cu2-δSe,” J. All. Comp. 361(1), 57–61 (2003).

    Article  Google Scholar 

  52. Yu. G. Asadov, G. A. Dzhabrailova, and V. I. Nasirov, “Structural transformations in Cu2Se,” Neorg. Mater. 8(6), 1144 (1970).

    Google Scholar 

  53. Yu. G. Asadov, K. M. Dzhafarov, and S. Yu. Asadov, “X-ray study of cation replacement in Cu2Se,” Neorg. Mater. 36(5), 542 (2000).

    Article  Google Scholar 

  54. Yu. I. Aliyev, Yu. G. Asadov, A. G. Babayev, K. M. Jafarov, F. G. Magerramova, and R. D. Aliyeva, “The polymorphous transformations in Cu1.50Zn0.30Te and Cu1.75Cd0.05Te crystals,” Azerb. J. Phys. 18(1), 37–43 (2012).

    Google Scholar 

  55. Yu. G. Asadov and G. A. Jabrailova, “Investigation of polymorphic transformations in Ag2Se,” Phys. Stat. Sol. (a) 12 K13 (1972).

    Article  ADS  Google Scholar 

  56. Yu. I. Aliyev, A. G. Babayev, D. I. Ismaylov, and Yu. G. Asadov, “The structural and thermodynamic aspects of polymorphic transformations in Ag2Se,” Azerb. J. Phys. 13(3), 56–61 (2006).

    Google Scholar 

  57. R. B. Baikulov and Yu. G. Asadov, “High-temperature X-ray diffraction study of the α⇄β transformation in CuAgSe,” Neorg. Mater. 41(4), 338–342 (2005).

    Article  Google Scholar 

  58. Yu. G. Asadov, R. B. Baykulov, C. C. Hamidova, and Yu. I. Aliyev, “Polymorphic transformations in Cu1 ± x Ag1 ± xSe (x = 0.0, 0.4, 0.5),” Azerb. J. Phys. 11(4), 253 (2005)

    Google Scholar 

  59. Sh. K. Kyazymov, K. M. Dzhafarov, and Yu. G. Asadov, “Polymorphic transformations in Ag1.5Cu0.5Se,” Neorg. Mater. 27(2), 253 (1991).

    Google Scholar 

  60. Yu. G. Asadov, R. B. Baykulov, and Yu. I. Aliyev, “Phase transitions in CuAgS0.5Se0.5,” Azerb. J. Phys. 11(1–2), 62 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Asadov.

Additional information

Original Russian Text © Yu.G. Asadov, Yu.I. Aliyev, A.G. Babaev, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadov, Y.G., Aliyev, Y.I. & Babaev, A.G. Polymorphic transformations in Cu2Se, Ag2Se, AgCuSe and the role of partial cation-cation and anion-anion replacement in stabilizing their modifications. Phys. Part. Nuclei 46, 452–474 (2015). https://doi.org/10.1134/S106377961503003X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377961503003X

Keywords

Navigation