Skip to main content
Log in

The general relativity with conformal units

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

General Relativity rewritten in conformal units identifies conformal intervals with the real observational distances. This identification gives a base to explain all epochs of the Universe evolution including Ia supernova luminosity long distance-redshift relation by the dominance of the Casimir vacuum energy of all physical fields. A set of arguments is discussed in favor that SNe Ia data in the conformal units can be an evidence of the conformal twistor structure of the space-time as a nonlinear realization of the affine group, like the nonlinear realization of chiral symmetry and phenomenological Lagrangian is evidence of the quark structure of hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Deser, “Scale Invariance and Gravitational Coupling,” Ann. Phys. 59, 248 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  2. P. A. M. Dirac, “Long Range Forces and Broken Symmetries,” Proc. Roy. Soc. London A 333, 403 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  3. V. I. Ogievetsky, “Infinite-Dimensional Algebra of General Covariance Group as the Closure of Finite-Dimensional Algebras of Conformal and Linear Groups,” Lett. Nuovo Cim. 8, 988 (1973).

    Article  MathSciNet  Google Scholar 

  4. A. B. Borisov and V. I. Ogievetsky, “Theory of Dynamical Affine and Conformal Symmetries as Gravity Theory,” Theor. Math. Phys. 21, 1179 (1975).

    Article  Google Scholar 

  5. S. R. Coleman, J. Wess, and B. Zumino, “Structure of Phenomenological Lagrangians. 1,” Phys. Rev. 177, 2239 (1969); D. V. Volkov, “Phenomenological Lagrangians,” Fiz. Elem. Chast. At. Yadra 4, 3 (1973); D. V. Volkov, Preprint ITF-69-73 (Inst. Teor. Fiz., Kiev, 1969).

    Article  ADS  Google Scholar 

  6. V. Fock, “Geometrization of Dirac’s Theory of the Electron,” Z. Phys. 57, 261 (1929).

    Article  ADS  MATH  Google Scholar 

  7. A. Actor, “Scalar Quantum Fields Confined by Rectangular Boundaries,” Fortsch. Phys. 43, 141 (1995); M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir Effect (Oxford Univ. Press, New York, 2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, “[Supernova Search Team Collaboration] Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009 (1998); P. Astier, J. Guy, N. Regnault, R. Pain, E. Aubourg, D. Balam, S. Basa, R. G. Carlberg, S. Fabbro, D. Fouchez, I. M. Hook, D. A. Howell, H. Lafoux, J. D. Neill, N. Palanque-Delabrouille, K. Perrett, C. J. Pritchet, J. Rich, M. Sullivan, R. Taillet, G. Aldering, P. AntiloR8b 8f + gus, V. Arsenijevic, C. Balland, S. Baumont, J. Bronder, H. Courtois, R. S. Ellis, M. Filiol, A. C. Goncalves, A.Goobar, D. Guide, D. Hardin, V. Lusset, C. Lidman, R. McMahon, M. Mouchet, A. Mourao, S. Perlmutter, P. Ripoche, C. Tao, and N. Walton, “[The SNLS Collaboration] The Supernova Legacy Survey: Measurement of Ω(M), Ω(Λ) and w from the First Year Data Set,” Astron. Astrophys. 447, 31 (2006).

    Article  ADS  Google Scholar 

  9. D. Behnke, D. B. Blaschke, V. N. Pervushin, and D. Proskurin, “Description of Supernova Data in Conformal Cosmology without Cosmological Constant,” Phys. Lett. B 530, 20 (2002).

    Article  ADS  MATH  Google Scholar 

  10. A. F. Zakharov and V. N. Pervushin, “Conformal Cosmological Model Parameters with Distant SNe Ia Data: ‘Gold’ and ’silver’,” Int. J. Mod. Phys. D 19, 1875 (2010).

    Article  ADS  MATH  Google Scholar 

  11. A. Friedmann, “Über die Krümmung des Raumes,” Z. Phys. 10, 377 (1922); A. Friedmann, “Über die Möglichkeit einer Welt mit Konstanter Negativer Krümmung des Raumes,” Z. Phys. 21, 306 (1924)

    Article  ADS  Google Scholar 

  12. A. Lichnerowicz, “L’Integration des Equations de la Gravitation Relativiste et le Probleme des N Corps (in French),” J. Math. Pures Appl. B 37, 23 (1944); J. W. York, “Gravitational Degrees of Freedom and the Initial-Value Problem,” Phys. Rev. Lett. 26, 1656 (1971). K. Kuchar, “A Bubble-Time Canonical Formalism for Geometrodynamics,” J. Math. Phys. 13, 768 (1972).

    MathSciNet  Google Scholar 

  13. A. L. Zelmanov, “Chronometric invariants and accompanying coordinates in General Relativity,” Dokl. Akad. Nauk SSSR 107, 315 (1956); A. L. Zelmanov,“ Kinemetric Invariants and Their Relation to the Chronometric Invariants of Einstein’s Theory of Gravity,” Dokl. Akad. Nauk SSSR 209, 822 (1973).

    MathSciNet  Google Scholar 

  14. A. Einstein, “Cosmological Considerations in the General Theory of Relativity,” Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 142 (1917).

  15. J. Goldstone, “Field Theories with Superconductor Solutions,” Nuovo Cim. A 19, 154 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Quantum Effects in Strong External Fields (Friedmann Laboratory, St. Petersburg, 1994).

    Google Scholar 

  17. B. S. DeWitt, “Quantum Theory of Gravity. 1. The Canonical Theory,” Phys. Rev. 160, 1113 (1967).

    Article  ADS  MATH  Google Scholar 

  18. J. A. Wheeler, “Lectures in Mathematics and Physics,” Ed. by C. DeWitt and J. A. Wheeler (New York, 1968).

  19. E. P. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz Group,” Ann. Math. 40, 149 (1939).

    Article  MathSciNet  Google Scholar 

  20. B. M. Barbashov, V. N. Pervushin, A. F. Zakharov, and V. A. Zinchuk, “Hamiltonian Cosmological Perturbation Theory,” Phys. Lett. B 633, 458 (2006).

    Article  ADS  MATH  Google Scholar 

  21. A. B. Arbuzov, B. M. Barbashov, R. G. Nazmitdinov, A. Borowiec, K. N. Pichugin, and A. F. Zakharov, “Conformal Hamiltonian Dynamics of General Relativity,” Phys. Lett. B 691, 230 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  22. V. N. Pervushin, A. B. Arbuzov, B. M. Barbashov, R. G. Nazmitdinov, A. Borowiec, K. N. Pichugin, and A. F. Zakharov, “Conformal and Affine Hamiltonian Dynamics of General Relativity.” arXiv:1109.2789[gr-qc].

  23. N. Panagia, “High Redshift Supernovae: Cosmological Implications,” Nuovo Cim. B 120, 667 (2005).

    ADS  Google Scholar 

  24. D. Behnke, D. B. Blaschke, V. N. Pervushin, and D. V. Proskurin, “Description of Supernova Data in Conformal Cosmology without Cosmological Constant,” Phys. Lett. B 530, 20 (2002).

    Article  ADS  MATH  Google Scholar 

  25. D. Behnke, “Conformal Cosmology Approach to the Problem of Dark Matter,” PhD Thesis, Rostock Report MPG-VT-UR 248/04 (Rostock, 2004).

  26. D. B. Blaschke, S. I. Vinitsky, A. A. Gusev, V. N. Pervushin and D. V. Proskurin, “Cosmological Production of Vector Bosons and Cosmic Microwave Background Radiation,” Phys. At. Nucl. 67, 1050 (2004); B. M. Barbashov, V. N. Pervushin, A. F. Zakharov, and V. A. Zinchuk, “Hamiltonian General Relativity in Finite Space and Cosmological Potential Perturbations,” Int. J. Mod. Phys. A 12, 5957 (2006). B. M. Barbashov, V. N. Pervushin, A. F. Zakharov, and V. A. Zinchuk, “The Hamiltonian Approach to General Relativity and CMB Primordial Spectrum,” Int. J. Geom. Meth. Mod. Phys. 4, 171 (2007).

    Article  Google Scholar 

  27. A. G. Riess, P. E. Nugent, R. L. Gilliland, B. P. Schmidt, J. Tonry, M. Dickinson, R. I. Thompson, T. Budavári, S. Casertano, A. S. Evans, A. V. Filippenko, M. Livio, D. B. Sanders, A. E. Shapley, H. Spinrad, C. C. Steidel, D. Stern, J. Surace, and S. Veilleux, “[Supernova Search Team Collaboration] the Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration,” Astrophys. J. 560, 49 (2001); M. Tegmark, “Measuring the Metric: A Parametrized Post-Friedmanian Approach to the Cosmic Dark Energy Problem,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 66, 103507 (2002).

    Article  ADS  Google Scholar 

  28. A. G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H. C. Ferguson, B. Mobasher, P. Challis, A. V. Filippenko, S. Jha, W. Li, R. Chornock, R. P. Kirshner, B. Leibundgut, M. Dickinson, M. Livio, M. Gia- valisco, C. C. Steidel, T. Ben?tez, and Z. Tsvetanov, “Type Ia Supernova Discoveries at Z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution,” Astrophys. J. 607, 665 (2004).

    Article  ADS  Google Scholar 

  29. R. Penrose, Relativity, Groups and Topology (Gordon Breach, London, 1964); N. Chernikov and T. Tagirov, in Quantum Theory of Scalar Fields in de Sitter Space-Time, (Ann. Inst. Henri Poincaré, London, 1968), Vol. 9, pp. 109.

    Google Scholar 

  30. L. B. Litov and V. N. Pervushin, “Quantum Supertwistors and Fundamental Superspaces,” Phys. Lett. B 147, 76 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  31. Yu. S. Vladimirov and A. N. Gubanov, “Unification of Gravi-Electroweak and Strong Interactions in an 8-Dimensional Theory,” Grav. Cosm. 5, 277 (1999).

    MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Pervushin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pervushin, V.N., Arbuzov, A.B., Barbashov, B.M. et al. The general relativity with conformal units. Phys. Part. Nuclei 43, 682–688 (2012). https://doi.org/10.1134/S1063779612050310

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779612050310

Keywords

Navigation