Skip to main content
Log in

J-matrix method for calculations of three-body Coulomb wave functions and cross sections of physical processes

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The review is devoted to a widely known method of numerical solution to the three-body Coulomb problem, namely, the J-matrix method. Special attention is paid to ways of solving the Lippmann-Schwinger integral equation without attraction of pseudostates. Difficulties related to the formulation of the integral equation in spherical coordinates, leading to the divergence of its integral part if the wave function is calculated with two asymptotically free electrons, are demonstrated. In addition, the relation between exact and approximate solutions turns out to be unclear if the matrix of a residual potential is restricted to a finite number of basis functions, with the latter being increased. It is shown that, in principle, these problems can be avoided by reformulating a problem in parabolic coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Zhigunov and B. N. Zakhariev, Methods of Strong Coupling of Channels in Quantum Scattering Theory (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  2. R. K. Peterkop, Theory of Ionization of Atoms (Univ. Colorado, Boulder, 1977; Zinatne, Riga, 1975).

    Google Scholar 

  3. S. P. Merkuriev and L. D. Faddeev, Quantum Scattering Theory for the Few-Body Systems (Nauka, Moscow, 1985; Kluwer Academic, Dordrecht, Boston, London, 1993).

    Google Scholar 

  4. A. A. Kvitsinsky, Yu. A. Kuperin, S. P. Merkuriev, A. K. Motovilov, and S. L. Yakovlev, “N-Body Quantum Problem in Configuration Space,” Fiz. Elem. Chastits At. Yadra 17, 267–317 (1986) [Sov. J. Part. Nucl. 17, 113 (1986)].

    Google Scholar 

  5. A. A. Kvitsinsky, V. V. Kostrykin, and S. P. Merkuriev, “Scattering Theory for Quantum Three-Body Systems at Fixed Total-Angular Momentum,” Fiz. Elem. Chastits At. Yadra 21, 1301–1359 (1990) [Sov. J. Part. Nucl. 21, 553 (1990)].

    Google Scholar 

  6. M. Rotenberg, “Application of Sturmian Functions to the Schrödinger Three-Body Problem: Elastic e+ − H Scattering,” Ann. Phys. 19, 262–278 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M. Rotenberg, “Theory and Application of Sturmian Functions,” Adv. At. Mol. Phys. 6, 233–268 (1970).

    Article  Google Scholar 

  8. S. V. Khristenko, “Sturmian Expansions of the Green’s Functions for Very Simple Systems,” Teor. Mat. Fiz. 22, 31–45 (1975).

    Google Scholar 

  9. H. A. Yamani and W. P. Reinhardt, “L 2 Discretization of the Continuum: Radial Kinetic Energy and Coulomb Hamiltonian,” Phys. Rev. A 11, 1144–1156 (1975).

    Article  ADS  Google Scholar 

  10. J. T. Broad, “Gauss Quadrature Generated by Diagonalization of H in Finite L 2 Bases,” Phys. Rev. A 18, 1012–1027 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  11. W. P. Reinhardt, “L 2 Discretization of Atomic and Molecular Electronic Continua: Moment, Quadrature and J -Matrix Techniques,” Comp. Phys. Commun. 17, 1–21 (1979).

    Article  ADS  Google Scholar 

  12. J. T. Broad, “Weyl’s Theory in an L 2-Basis Gauss Quadrature of the Spectral Density,” Phys. Rev. A 26, 3078–3092 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  13. K. Kaufmann, W. Baumeister, and M. Jungen, “Universal Gaussian Basis Sets for an Optimum Representation of Rydberg and Continuum Wavefunctions,” J. Phys. B: At. Mol. Opt. Phys. 22, 2223–2240 (1989).

    Article  ADS  Google Scholar 

  14. M. R. Hermann and P. W. Langhoff, “Explicit Hilbert Space Representations of Schrödinger States: Definitions and Properties of Stieltjes-Tchebycheff Orbitals,” J. Math. Phys. 24, 541–547 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. T. N. Rescigno, C. W. McCurdy, and V. McKoy, “Discrete Basis Set Approach to Nonspherical Scattering,” Chem. Phys. Lett. 27, 401–404 (1974).

    ADS  Google Scholar 

  16. T. N. Rescigno, C. W. McCurdy, and V. McKoy, “Discrete Basis Set Approach to Nonspherical Scattering. II,” Phys. Rev. A 10, 2240–2245 (1974).

    Article  ADS  Google Scholar 

  17. T. N. Rescigno, C. W. McCurdy, and V. McKoy, “LowEnergy e H 2 Elastic Cross Sections Using Discrete Basis Functions,” Phys. Rev. A 11, 825–829 (1975).

    Article  ADS  Google Scholar 

  18. A. W. Fliflet and V. McKoy, “Discrete-Basis-Set Method for Electron-Molecule Continuum Wave Functions,” Phys. Rev. A 18, 2107–2114 (1978).

    Article  ADS  Google Scholar 

  19. D. K. Watson, R. R. Lucchese, V. McKoy, and T. N. Rescigno, “Schwinger Variational Principle for Electron-Molecule Scattering: Application to Electron-Hydrogen Scattering,” Phys. Rev. A 21, 738–744 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  20. C. W. McCurdy and T. N. Rescigno, “Complex-Basis-Function Calculations of Resolvent Matrix Elements: Molecular Photoionization,” Phys. Rev. A 21, 1499–1505 (1980).

    Article  ADS  Google Scholar 

  21. A. L. Zubarev, “Schwinger Variational Principle,” Fiz. Elem. Chastits At. Yadra 9, 453–489 (1978) [Sov. J. Part. Nucl. 9, 188 (1978)].

    MathSciNet  Google Scholar 

  22. A. L. Zubarev, The Schwinger Variational Principle in Quantum Mechanics (Energoatomizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  23. E. J. Heller and H. A. Yamani, “New L 2 Approach to Quantum Scattering: Theory,” Phys. Rev. A 9, 1201–1208 (1974).

    Article  ADS  Google Scholar 

  24. H. A. Yamani and L. Fishman, “J-Matrix Method: Extension to Arbitrary Angular Momentum and to Coulomb Scattering,” J. Math. Phys. 16, 410–420 (1975).

    Article  ADS  Google Scholar 

  25. The J-Matrix Method: Developments and Applications, Ed. by A. D. Alhaidari, E. J. Heller, H. A. Yamani, and M. S. Abdelmonem (Springer Sci., Business Media, 2008).

    Google Scholar 

  26. A. M. Lane and A. M. Thomas, “R-Matrix Theory of Nuclear Reactions,” Rev. Mod. Phys. 30, 257–353 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. M. Lane and D. Robson, “Optimization of Nuclear Resonance Reaction Calculations,” Phys. Rev. 178, 1715–1724 (1969).

    Article  ADS  Google Scholar 

  28. H. A. Yamani, “The Equivalence of the Feshbah and J-Matrix Methods,” J. Math. Phys. 23, 83–86 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Feshbah, “Unified Theory of Nuclear Reactions,” Ann. Phys. 5, 357–390 (1958).

    Article  ADS  Google Scholar 

  30. H. A. Yamani, A. D. Alhaidari, and M. S. Abdel- monem, “J-Matrix Method of Scattering in Any L 2 Basis,” Phys. Rev. A 64, 042703-1–042703-9 (2001).

    Article  ADS  Google Scholar 

  31. H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, and F. Martin, “Application of B-Splines in Atomic and Molecular Physics,” Rep. Prog. Phys. 64, 1815–1942 (2001).

    Article  ADS  Google Scholar 

  32. V. V. Pupyshev, “Spline Function Methods in Few Body Problem,” Fiz. Elem. Chastits At. Yadra 35, 257–347 (2004) [Phys. Part. Nucl. 35, 145 (2004)].

    Google Scholar 

  33. F. A. Gareev, M. Ch. Gizzatkulov, and J. Révai, “A New Method for Solving the Two-Center Problem with Realistic Potentials,” Nucl. Phys. A 286, 512–522 (1977).

    Article  ADS  Google Scholar 

  34. E. Truhlik, “Lippmann-Schwinger Equation in the Harmonic-Oscillator Basis for the Trinucleon Bound-State Problem,” Nucl. Phys. A 296, 134–140 (1978).

    Article  ADS  Google Scholar 

  35. F. A. Gareev, S. N. Ershov, J. Révai, J. Bang, and B. S. Nilsson, “A New Method for Calculation of Eigenstates for a System of a Core and Two Valence Nucleons,” Phys. Scripta 19, 509–515 (1979).

    Article  ADS  Google Scholar 

  36. B. Gyarmati, A. T. Kruppa, and J. Révai, “A Rigorous Foundation of an Easy-to-Apply Approximation Method for Bound State Problems,” Nucl. Phys. A 326, 119–128 (1979).

    Article  ADS  Google Scholar 

  37. B. Gyarmati, A. T. Kruppa, Z. Papp, and G. Wolf, “Single-Particle Resonant States in Deformed Poten-tials,” Nucl. Phys. A 417, 393–404 (1984).

    Article  ADS  Google Scholar 

  38. A. T. Kruppa and Z. Papp, “Resonant or Bound State Solution of the Schrödinger Equation in Deformed or Spherical Potential,” Comp. Phys. Commun. 36, 59–78 (1985).

    Article  ADS  Google Scholar 

  39. J. Révai, M. Sotona, and J. ofka, “Note on the Use of Harmonic-Oscillator Wavefunctions in Scattering Calculations,” J. Phys. G: Nucl. Part. Phys. 11, 745–749 (1985).

    Article  ADS  Google Scholar 

  40. K. F. Pal, “Orthogonality Condition Model for Bound and Resonant States with a Separable Expansion of the Potential,” J. Phys. A: Math. Gen. 18, 1665–1674 (1985).

    Article  ADS  MATH  Google Scholar 

  41. G. F. Filippov and Yu. A. Lashko, “Structure of Light Neutron-Rich Nuclei and Nuclear Reactions Involving These Nuclei,” Fiz. Elem. Chastits At. Yadra 36, 1373–1424 (2005) [Phys. Part. Nucl. 36, 714 (2005)].

    Google Scholar 

  42. Z. Papp, “Bound and Resonant States in Coulomb-Like Potentials,” J. Phys. A: Math. Gen. 20, 153–162 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  43. Z. Papp, “Potential Separable Expansion Approach to Scattering on Coulomb-Like Potentials,” Phys. Rev. C 38, 2457–2460 (1988).

    Article  ADS  Google Scholar 

  44. Z. Papp, “Use of Coulomb-Sturmian Functions in Calculating Scattering Quantities in Coulomb-Like Potentials,” Phys. Rev. A 46, 4437–4439 (1992).

    Article  ADS  Google Scholar 

  45. Z. Papp, “Calculating Bound and Resonant States in Local and Nonlocal Coulomb-Like Potentials,” Comp. Phys. Commun. 70, 426–434 (1992).

    Article  ADS  Google Scholar 

  46. Z. Papp, “Calculating Scattering States in Local and Nonlocal Coulomb-Like Potentials,” Comp. Phys. Commun. 70, 435–439 (1992).

    Article  ADS  Google Scholar 

  47. J. Darai, B. Gyarmati, B. Kónya, and Z. Papp, “Variational Separable Expansion Scheme for Two-Body Coulomb-Scattering Problems,” Phys. Rev. C 63, 057001-1–057001-3 (2001).

    Article  ADS  Google Scholar 

  48. Z. Papp and W. Plessas, “Coulomb-Sturmian Separable Expansion Approach: Three-Body Faddeev Calculations for Coulomb-Like Interactions,” Phys. Rev. C 54, 50–56 (1996).

    Article  ADS  Google Scholar 

  49. Z. Papp, J. Darai, C.-Y. Hu, Z. T. Hlousek, B. Kónya, and S. L. Yakovlev, “Resonant-State Solution of the Faddeev-Merkuriev Integral Equations for Three-Body Systems with Coulomb Potentials,” Phys. Rev. A 65, 032725-1–032725-5 (2002).

    Article  ADS  Google Scholar 

  50. Z. Papp, J. Darai, J. Zs. Mezei, Z. T. Hlousek, and C.-Y. Hu, “Accumulation of Three-Body Resonances above Two-Body Thresholds,” Phys. Rev. Lett. 94, 143201-1–143201-4 (2005).

    Article  ADS  Google Scholar 

  51. Z. Papp and J. Zs. Mezei, “Efimov Resonances in Atomic Three-Body Systems,” Phys. Rev. A 73, 030701(R)-1–030701(R)-3 (2006).

    Google Scholar 

  52. Z. Papp, “Three-Potential Formalism for the Three-Body Coulomb Scattering Problem,” Phys. Rev. C 55, 1080–1087 (1997).

    Article  ADS  Google Scholar 

  53. Z. Papp, C.-Y. Hu, Z. T. Hlousek, B. Kónya, and S. L. Yakovlev, “Three-Potential Formalism for the Three-Body Scattering Problem with Attractive Coulomb Interactions,” Phys. Rev. A 63, 062721-1–062721-11 (2001).

    Article  ADS  Google Scholar 

  54. B. Konya, G. Levai, and Z. Papp, “Continued Fraction Representation of the Coulomb Green’s Operator and Unified Description of Bound, Resonant and Scattering States,” Phys. Rev. C 61, 034302-1–034302-7 (2000).

    Article  ADS  Google Scholar 

  55. F. Demir, Z. T. Hlousek, and Z. Papp, “CoulombSturmian Matrix Elements of the Coulomb Green’s Operator,” Phys. Rev. A 74, 014701-1–014701-4 (2006).

    Article  ADS  Google Scholar 

  56. H. A. Yamani, “The J-Matrix Reproducing Kernel: Numerical Weights at the Harris Energy Eigenvalues,” J. Math. Phys 25, 317–322 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  57. E. J. Heller and H. A. Yamani, “J-Matrix Method: Application to S-Wave Electron-Hydrogen Scattering,” Phys. Rev. A 9, 1209–1214 (1974).

    Article  ADS  Google Scholar 

  58. J. T. Broad and W. P. Reinhardt, “J-Matrix Method: Multichannel Scattering and Photoionization,” J. Phys. B: At. Mol. Phys. 9, 1491–1502 (1976).

    Article  ADS  Google Scholar 

  59. J. T. Broad and W. P. Reinhardt, “One- and Two-Electron Photoejection from H-: A Multichannel J-Matrix Calculation,” Phys. Rev. A 14, 2159–2173 (1976).

    Article  ADS  Google Scholar 

  60. I. Bray and A. T. Stelbovics, “Explicit Demonstration of the Convergence of the Close-Coupling Method for a Coulomb Three-Body Problem,” Phys. Rev. Lett. 69, 53–56 (1992).

    Article  ADS  Google Scholar 

  61. H. A. Yamani and M. S. Abdelmonem, “A Simple Method to Extract Resonance Information from the Harris Energy Eigenvalues and Eigenvectors,” J. Phys. A: Math. Gen. 26, L1183–L1187 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  62. H. A. Yamani and M. S. Abdelmonem, “Resonance Information from the Analytically Continued S-Matrix,” J. Phys. A: Math. Gen. 27, 5345–5355 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. H. A. Yamani and M. S. Abdelmonem, “Characterization of Resonances Using an Exact Model S-Matrix,” J. Phys. A: Math. Gen. 28, 2709–2715 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  64. H. A. Yamani and M. S. Abdelmonem, “The Complex-Scaling Method Using a Complete L 2-Basis,” J. Phys. A: Math. Gen. 29, 6991–6998 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. I. Nasser, M. S. Abdelmonem, H. Bahlouli, and A. D. Alhaidari, “The Rotating Morse Potential Model for Diatomic Molecules in the Tridiagonal J-Matrix Representation: I. Bound States,” J. Phys. B: At. Mol. Opt. Phys. 40, 4245–4257 (2007).

    Article  ADS  Google Scholar 

  66. I. Nasser, M. S. Abdelmonem, H. Bahlouli, and A. D. Alhaidari, “The Rotating Morse Potential Model for Diatomic Molecules in the J-Matrix Representation: II. The S-Matrix Approach,” J. Phys. B: At.Mol. Opt. Phys. 41, 215001-1–215001-6 (2008).

    Article  ADS  Google Scholar 

  67. L. Ya. Stotland, Yu. F. Smirnov, and A. M. Shirokov, “S-Matrix Poles in Discrete Representation of Scattering Theory,” Izv. AN SSSR, Ser. Fiz. 54, 897–906 (1990).

    Google Scholar 

  68. E. J. Heller, “Theory of J-Matrix Green’s Functions with Applications to Atomic Polarizability and Phase-Shift Error Bounds,” Phys. Rev. A 12, 1222–1231 (1975).

    Article  ADS  Google Scholar 

  69. B. Silvestre-Brac, C. Ginoux, and Y. Ayant, “Free Green’s Function in a Harmonic Oscillator Basis,” J. Phys. A: Math. Gen. 22, 2288–2290 (1989).

    Google Scholar 

  70. H. A. Yamani and M. S. Abdelmonem, “Multi-Channel Green’s Functions in Complete L 2 Bases,” J. Phys. B: At. Mol. Opt. Phys. 30, 1633–1650 (1997).

    Article  ADS  Google Scholar 

  71. S. Laulan and H. Bachau, “One- and Two-Photon Double Ionization of Beryllium with Ultrashort Ultraviolet Laser Fields,” Phys. Rev. A 69, 033408-1–033408-7 (2004).

    Article  ADS  Google Scholar 

  72. E. Foumouo, G. L. Kamta, G. Edah, and B. Piraux, “Theory of Multiphoton Single and Double Ionization of Two-Electron Atomic Systems Driven by Short-Wavelength Electric Fields: An Ab Initio Treatment,” Phys. Rev. A 74, 063409-1–063409-22 (2006).

    Article  ADS  Google Scholar 

  73. A. S. Kadyrov, I. Bray, A. M. Mukhamedzhanov, and A. T. Stelbovics, “Surface-Integral Formulation of Scattering Theory,” Ann. Phys. 324, 1516–1546 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. V. L. Shablov, V. A. Bilyk, and Yu. V. Popov, “Status of the Convergent Close-Coupling Method within the Framework of the Rigorous Coulomb Scattering Theory,” Phys. Rev. A 65, 042719-1–042719-4 (2002).

    Article  ADS  Google Scholar 

  75. I. Bray, D. V. Fursa, A. S. Kheifets, and A. T. Stelbovics, “Electrons and Photons Colliding with Atoms: Development and Application of the Convergent Close-Coupling Method,” J. Phys. B: At. Mol. Opt. Phys. 35, R117–R146 (2002).

    Article  ADS  Google Scholar 

  76. A. Lahmam-Bennani, I. Taouil, A. Duguet, M. Lecas, L. Avaldi, and J. Berakdar, “Origin of Dips and Peaks in the Absolute Fully Resolved Cross Sections for the Electron-Impact Double Ionization of He,” Phys. Rev. A 59, 3548–3555 (1999).

    Article  ADS  Google Scholar 

  77. V. A. Knyr, V. V. Nasyrov, and Yu. V. Popov, “Application of the J Matrix Method for Describing the (e, 3e) Reaction in the Helium Atom,” Zh. Eksp. Teor. Fiz. 119, 906–912 (2001) [J. Exp. Theor. Phys. 92, 789 (2001)].

    Google Scholar 

  78. M. Brauner, J. S. Briggs, and H. Klar, “Triply-Differential Cross Sections for Ionization of Hydrogen Atoms by Electrons and Positrons,” J. Phys. B: At.Mol. Opt. Phys. 22, 2265–2287 (1989).

    Article  ADS  Google Scholar 

  79. V. A. Knyr and L. Ya. Stotland, “The Three-Body Problem and J-Matrix Method,” Yad. Fiz. 55, 2908–2914 (1992) [Sov. J. Nucl. Phys. 55, 1626 (1992)].

    Google Scholar 

  80. V. A. Knyr and L. Ya. Stotland, “Possibility of Solving the Three-Body Problem by the J-Matrix Method,” Yad. Fiz. 59, 607–615 (1996) [Phys. At. Nucl. 59, 575 (1996)].

    Google Scholar 

  81. S. A. Zaytsev, V. A. Knyr, and Yu. V. Popov, “Solving Faddeev-Merkuriev Equations within the J-Matrix Approach: Application to Coulomb Problems,” Yad. Fiz. 69, 276–283 (2006) [Phys. At. Nucl. 69, 255 (2006)].

    Google Scholar 

  82. S. A. Zaytsev, V. A. Knyr, and Yu. V. Popov, “Description of the Continuous Spectrum of a Three-Body Coulomb System within the J-Matrix Approach,” Yad. Fiz. 70, 706–713 (2007) [Phys. At. Nucl. 70, 676 (2007)].

    Google Scholar 

  83. S. A. Zaytsev, V. A. Knyr, Yu. V. Popov, and A. Lahmam-Bennani, “Application of the J-Matrix Method to Faddeev-Merkuriev Equations for (e,2e) Reactions: Beyond Pseudostates,” Phys. Rev. A 76, 022718-1–022718-11 (2007).

    Article  ADS  Google Scholar 

  84. S. A. Zaytsev, V. A. Knyr, Yu. V. Popov, and A. Lahmam-Bennani, “A New Theoretical Approach for (e,2e) and (e,3e) Processes,” J. Phys: Conf. Ser. 141, 012008-1–012008-6 (2008).

    ADS  Google Scholar 

  85. J. T. Broad, “Calculation of Two-Photon Processes in Hydrogen with an L 2 Basis,” Phys. Rev. A 31, 1494–1514 (1985).

    Article  ADS  Google Scholar 

  86. R. Shakeshaft, “Integral Representation of the Coulomb Green’s Function Derived from the Sturmian Expansion,” Phys. Rev. A 70, 042704-1–042704-9 (2004).

    Article  ADS  Google Scholar 

  87. S. A. Zaytsev, Doctoral Dissertation in Physics and Mathematics (Tikhookeansk. State Univ., Khabarovsk, 2009).

    Google Scholar 

  88. I. Bray and A. T. Stelbovics, “Convergent Close-Coupling Calculations of Electron-Hydrogen Scattering,” Phys. Rev. A 46, 6995–7011 (1992).

    Article  ADS  Google Scholar 

  89. I. Bray and D. V. Fursa, “Calculation of Ionization within the Close-Coupling Formalism,” Phys. Rev. A 54, 2991–3004 (1996).

    Article  ADS  Google Scholar 

  90. I. Bray, “Close-Coupling Approach to Coulomb Three-Body Problems,” Phys. Rev. Lett 89, 273201-1–273201-4 (2002).

    Google Scholar 

  91. I. Bray, “Convergent Close-Coupling Method for the Calculation of Electron Scattering on Hydrogen Target,” Phys. Rev. A 49, 1066–1082 (1994).

    Article  ADS  Google Scholar 

  92. V. L. Shablov, P. S. Vinitsky, Yu. V. Popov, O. Chuluun- baatar, and K. A. Kuzakov, “Born Series in the Theory of Electron Impact Ionization of an Atom,” Fiz. Elem. Chastits At. Yadra 41, 607–650 (2010) [Phys. Part. Nucl. 41, 335 (2010)].

    Google Scholar 

  93. I. Bray and A. T. Stelbovics, “Comment on “Status of the Convergent Close-Coupling Method within the Framework of the Rigorous Coulomb Scattering Theory”,” Phys. Rev. A 66, 036701-1–036701-2 (2002).

    Article  ADS  Google Scholar 

  94. H. Ehrhardt, K. Jung, G. Knoth, and P. Schlemmer, “Differential Cross Sections of Direct Single Electron Impact Ionization,” Z. Phys. D 1, 3–32 (1986).

    Article  ADS  Google Scholar 

  95. C. Dupré, A. Lahmam-Bennani, A. Duguet, F. MotaFurtado, F. P. O’Mahony, and C. Dal Cappello, “(e,2e) Triple Differential Cross Sections for the Simultaneous Ionization and Excitation of Helium,” J. Phys. B: At. Mol. Opt. Phys. 25, 259–276 (1992).

    Article  ADS  Google Scholar 

  96. A. S. Kheifets, I. Bray, I. E. McCarthy, and Bo Shang, “Theoretical Triple Differential Cross Section of the Helium Atom Ionization with Excitation to the n = 2 Ion State,” Phys. Rev. A 50, 4700–4706 (1994).

    Article  ADS  Google Scholar 

  97. A. Kheifets, I. Bray, A. Lahmam-Bennani, A. Duguet, and I. Taouil, “A Comparative Experimental and Theoretical Investigation of the Electron-Impact Double Ionization of He in the keV Regime,” J. Phys. B: At. Mol. Opt. Phys. 32, 5047–5065 (1999).

    Article  ADS  Google Scholar 

  98. J. Berakdar, “Incremental Approach to Strongly Correlated Many-Body Finite Systems,” Phys. Rev. Lett. 85, 4036–4039 (2000).

    Article  ADS  Google Scholar 

  99. Dz. Belkic, “A Quantum Theory of Ionisation in Fast Collisions between Ions and Atomic Systems,” J. Phys. B: At. Mol. Phys. 11, 3529–3552 (1978).

    Article  ADS  Google Scholar 

  100. C. R. Garibotti and J. E. Miraglia, “Ionization and Electron Capture to the Continuum in the H+ — Hydrogen-Atom Collision,” Phys. Rev. A 21, 572–580 (1980).

    Article  ADS  Google Scholar 

  101. S. Jones and D. H. Madison, “Role of the Graund State in Electron-Atom Double Ionization,” Phys. Rev. Lett. 91, 073201-1–073201-4 (2003).

    ADS  Google Scholar 

  102. L. U. Ancarani, T. Montagnese, and C. Dal Cappello, “Role of the Helium Ground State in (e, 3e) Processes,” Phys. Rev. A 70, 012711-1–012711-10 (2004).

    Article  ADS  Google Scholar 

  103. O. Chuluunbaatar, I. V. Puzynin, P. S. Vinitsky, Yu. V. Popov, K. A. Kouzakov, and C. Dal Cappello, “Role of the Cusp Conditions in Electron-Helium Double Ionization,” Phys. Rev. A 74, 014703-1–014703-4 (2006).

    Article  ADS  Google Scholar 

  104. L. U. Ancarani and G. Gasaneo, “Double-Bound Equivalent of the Three-Body Coulomb Double-Continuum Wave Function,” Phys. Rev. A 75, 032706-1–032706-13 (2007).

    Article  ADS  Google Scholar 

  105. G. Gasaneo and L. U. Ancarani, “Use of Double-Bound Three-Body Coulomb Distorted-Wave-Like Basis Set for Two-Electron Wave Function,” Phys. Rev. A 77, 012705-1–012705-13 (2008).

    Article  ADS  Google Scholar 

  106. L. U. Ancarani, G. Gasaneo, F. D. Colavecchia, and C. Dal Capello, “Interplay of Initial and Final States for (e, 3e) and (γ, 2e) Processes on Helium,” Phys. Rev. A 77, 062712-1–062712-12 (2008).

    Article  ADS  Google Scholar 

  107. J. D. Dollard, “Asymptotic Convergence and the Coulomb Interaction,” J. Math. Phys. 5, 729–738 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  108. S. P. Merkuriev, “On the Three-Body Coulomb Scattering Problem,” Ann. Phys. 130, 395–426 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  109. W. Glöckle, J. Golak, R. Skibin’ski, and H. Witaba, “Exact Three-Dimensional Wave Function and the On-Shell t Matrix for the Sharply Cut-Off Coulomb Potential: Failure of the Standard Renormalization Factor,” Phys. Rev. C 79, 044003-1–044003-11 (2009).

    Article  ADS  Google Scholar 

  110. K. A. Kouzakov, Yu. V. Popov, and V. L. Shablov, “Comment on “Exact Three-Dimensional Wave Function and the On-Shell t Matrix for the Sharply Cut-Off Coulomb Potential: Failure of the Standard Renormalization Factor,” Phys. Rev. C 81, 019801-1–019801-2 (2010).

    Article  ADS  Google Scholar 

  111. A. Deltuva, A. C. Fonseca, and P. U. Sauer, “Comment on “Exact Three-Dimensional Wave Function and the On-Shell t Matrix for the Sharply Cut-Off Coulomb Potential: Failure of the Standard Renormalization Factor”,” Phys. Rev. C 81, 019802-1–019802-2 (2010).

    ADS  Google Scholar 

  112. S. L. Yakovlev, M. V. Volkov, E. Yarevsky, and N. Elander, “The Impact of Sharp Screening on the Coulomb Scattering Problem in Three Dimensions,” J. Phys. A: Math. Theor. 43, 245302-1–245302-10 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  113. J. R. Taylor, “A New Rigorous Approach to Coulomb Scattering,” Nuovo Cimento B 23, 313–334 (1974).

    Article  ADS  Google Scholar 

  114. M. D. Semon and J. R. Taylor, “Scattering by Potentials with Coulomb Tails,” Nuovo Cimento A 26, 48–58 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  115. S. L. Yakovlev and Z. Papp, “The Three-Body Coulomb Scattering Problem in a Discrete Hilbert-Space Basis Representation,” Teor. Mat. Fiz. 163, 314–327 (2010) [Theor. Math. Phys. 163, 666 (2010)].

    Google Scholar 

  116. J. M. Ngoko Djiokap, E. Foumouo, M. G. Kwato Njock, X. Urbain, and B. Piraux, “Electron-Impact Ionization-Excitation of Helium in the Quasi-Photon Regime,” Phys. Rev. A 81, 042712-1–042712-8 (2010).

    Article  ADS  Google Scholar 

  117. H. Klar, “Asymptotic Separability of Three-Body Continuum Wave Functions for Coulomb Systems,” Z. Phys. D: At. Mol. Clust. 16, 231–236 (1990).

    Article  ADS  Google Scholar 

  118. Teng Zhong-Jian and R. Shakeshaft, “Double Ionization of Helium by a Single High-Energy Photon,” Phys. Rev. A 47, R3487–R3490 (1993).

    Article  ADS  Google Scholar 

  119. M. A. Kornberg and J. E. Miraglia, “Double Photionization of Helium: Use of a Correlated Two-Electron Continuum Wave Function,” Phys. Rev. A 48, 3714–3719 (1993).

    Article  ADS  Google Scholar 

  120. D. S. F. Crothers and J. F. McCann, “Ionization of Atoms by Ion Impact,” J. Phys. B: At. Mol. Opt. Phys. 16, 3229–3242 (1983).

    Article  ADS  Google Scholar 

  121. Jetzke S. J. Zeremba, and F. H. M. Faisal, “Electron Impact Ionization of Atomic Hydrogen,” Z. Phys. D: At. Mol. Clust. 11, 63–69 (1989).

    Article  ADS  Google Scholar 

  122. S. Jetzke and F. H. M. Faisal, “Coulomb Correlations in Electron and Positron Impact Ionization of Hydrogen at Intermediate and Higher Energies,” J. Phys. B: At. Mol. Opt. Phys. 25, 1543–1558 (1992).

    Article  ADS  Google Scholar 

  123. J. Berakdar and J. S. Briggs, “Three-Body Coulomb Continuum Problem,” Phys. Rev. Lett. 72, 3799–3802 (1994).

    Article  ADS  Google Scholar 

  124. J. Berakdar and J. S. Briggs, “Interference Effects in (e,2e)-Differential Cross Sections in Doubly Symmetric Geometry,” J. Phys. B: At. Mol. Opt. Phys. 27, 4271–4280 (1994).

    Article  ADS  Google Scholar 

  125. J. Berakdar, “Approximate Analytic Solution of the Quantum-Mechanical Three-Body Coulomb Continuum Problem,” Phys. Rev. A 53, 2314–2326 (1996).

    Article  ADS  Google Scholar 

  126. E. O. Alt and A. M. Mukhamedzhanov, “Asymptotic Solution of the Schrödinger Equation for Three Charged Particles,” Phys. Rev. A 47, 2004–2022 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  127. A. M. Mukhamedzhanov, A. S. Kadyrov, and F. Pirlepesov, “Leading Asymptotic Terms of the Three-Body Coulomb Scattering Wave Function,” Phys. Rev. A 73, 0127013-1–0127013-11 (2006).

    Article  Google Scholar 

  128. J. Berakdar, “Energy-Exchange Effects in Few-Particle Coulomb Scattering,” Phys. Rev. Lett. 78, 2712–2715 (1997).

    Article  ADS  Google Scholar 

  129. G. Gasaneo, F. D. Colavecchia, C. R. Garibotti, J. E. Miraglia, and P. Macri, “Correlated Continuum Wave Functions for Three Particles with Coulomb Interactions,” Phys. Rev. A 55, 2809–2820 (1997).

    Article  ADS  Google Scholar 

  130. G. Gasaneo, F. D. Colavecchia, C. R. Garibotti, J. E. Miraglia, and P. Macri, “Multivariable Hypergeometric Solutions for Three Charged Particles,” J. Phys. B: At. Mol. Opt. Phys. 30, L265–L271 (1997).

    Article  ADS  Google Scholar 

  131. P. Macri, J. E. Miraglia, C. R. Garibotti, F. D. Colavecchia, and G. Gasaneo, “Approximate Analytical Solution for Two Electrons in the Continuum,” Phys. Rev. A 55, 3518–3525 (1997).

    Article  ADS  Google Scholar 

  132. G. Gasaneo, F. D. Colavecchia, and C. R. Garibotti, “Multivariable Hypergeometric Functions for Ion-Atom Collisions,” Nucl. Instrum. Methods Phys. Res. B 154, 32–40 (1999).

    Article  ADS  Google Scholar 

  133. S. A. Zaytsev, “One- and Two-Dimensional Coulomb Green’s Function Matrices in Parabolic Sturmian Basis,” J. Phys. A: Math. Theor. 41, 265204-1–265204-12 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  134. S. A. Zaytsev, “The Parabolic Sturmian-Function Basis Representation of the Six-Dimensional Coulomb Green’s Function,” J. Phys. A: Math. Theor 42, 015202-1–015202-16 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  135. F. D. Colavecchia, G. Gasaneo, and C. R. Garibotti, “Separable Wave Equation for Three Coulomb Interacting Particles,” Phys. Rev. A 57, 1018–1024 (1998).

    Article  ADS  Google Scholar 

  136. G. Bateman and A. Erdeii, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Nauka, Moscow, 1973), vol. 1.

    Google Scholar 

  137. L. Rosenberg, “Variational Methods in Charged-Particle Collision Theory,” Phys. Rev. D 8, 1833–1843 (1973).

    Article  ADS  Google Scholar 

  138. P. C. Ojha, “The Jacobi-Matrix Method in Parabolic Coordinates: Expansion of Coulomb Functions in Parabolic Sturmians,” J. Math. Phys. 28, 392–396 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  139. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964; Moscow, Nauka, 1979).

    MATH  Google Scholar 

  140. R. Newton, Scattering Theory of Waves and Particles (Springer, Berlin, 1982; Mir, Moscow, 1969).

    MATH  Google Scholar 

  141. L. C. Hostler, “Coulomb Green’s Function in f-Dimensional Space,” J. Math. Phys. 11, 2966–2970 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  142. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980; Nauka, Moscow, 1971).

    Google Scholar 

  143. B. A. Zon, N. L. Manakov, and L. P. Rapaport, “Two-Photon Bound-Bound Transitions in a Coulomb Field,” Zh. Eksp. Teor. Fiz. 55, 924–930 (1968) [Sov. Phys. JETP 28, 480 (1968)].

    Google Scholar 

  144. R. A. Swainson and G. W. Drake, “A Unified Treatment of Non-Relativistic and Relativistic Hydrogen Atom II: Green Functions,” J. Phys. A: Math. Gen. 24, 95–120 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  145. S. A. Zaytsev, “Representation of the Three-Body Coulomb Green’s Function in Parabolic Coordinates: Paths of Integration,” J. Phys. A: Math. Theor. 43, 385208-1–385208-18 (2010).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Popov.

Additional information

Dedicated to the memory of Victor Andreevich Knyr

Original Russian Text © Yu.V. Popov, S.A. Zaytsev, S.I. Vinitsky, 2011, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2011, Vol. 42, No. 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, Y.V., Zaytsev, S.A. & Vinitsky, S.I. J-matrix method for calculations of three-body Coulomb wave functions and cross sections of physical processes. Phys. Part. Nuclei 42, 683–712 (2011). https://doi.org/10.1134/S1063779611050042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779611050042

Keywords

Navigation