Skip to main content
Log in

The vacuum structure and special relativity revisited: A field theory no-geometry approach within the Lagrangian and Hamiltonian formalisms

  • Session “Quantum Field Theory and Theory of Elementary Particles”
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The work is devoted to studying the vacuum structure, special relativity, electrodynamics of interacting charged point particles and quantum mechanics, and is a continuation of [6, 7]. Based on the vacuum field theory no-geometry approach, the Lagrangian and Hamiltonian reformulation of some alternative classical electrodynamics models is devised. The Dirac type quantization procedure, based on the canonical Hamiltonian formulation, is developed for some alternative electrodynamics models. Within an approach developed a possibility of the combined description both of electrodynamics and gravity is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer,(New York, 1978).

    MATH  Google Scholar 

  2. R. Abraham and J. Marsden, Foundations of Mechanics (Benjamin, Cummings, Massachusetts, 1978).

    MATH  Google Scholar 

  3. N. N. Bogolyubov and D. V. Shirkov, Quantum Fields (Nauka, Moscow, 1984).

    Google Scholar 

  4. R. Feynman, Lectures on Gravitation, Notes of California Inst. of Technology (1971).

  5. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics. Electrodynamics, vol. 2 (Addison-Wesley, MA, 1964).

    Google Scholar 

  6. A. K. Prykarpatsky, N. N. Bogolyubov, Jr., and U. Taneri, “The Vacuum Structure, Special Relativity and Quantum Mechanics Revisited: A Field Theory No-Geometry Approach,” Theor. Math. Phys. 160, 1079–1095 (2009); arXiv lanl:0807.3691v.8 [gr-gc] (2008).

    Article  MATH  Google Scholar 

  7. A. K. Prykarpatsky, N. N. Bogolyubov, Jr., and U. Taneri, “The Field Structure of Vacuum, Maxwell Equations and Relativity Theory Aspects,” Preprint ICTP, IC/2008/051 (Trieste, 2008); http://publications.ictp.it.

  8. A. Prykarpatsky and I. Mykytiuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects (Kluwer Acad., Netherlands, 1998).

    MATH  Google Scholar 

  9. W. Thirring, Classical Mathematical Physics, 3rd ed. (Springer, 1992).

  10. P. A. M. Dirac, The Principles of Quantum Mechanics, 2nd ed. (Clarendon, Oxford, 1935).

    Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  13. N. Bogolyubov and D. Shirkov, Introduction to the Theory of Quantized Fields (Interscience, New York, 1959).

    MATH  Google Scholar 

  14. L. Brillouin, Relativity Reexamined (Academic, New York, London, 1970).

    Google Scholar 

  15. L. D. Faddeev, “Energy Problem in the Einstein Gravity Theory,” Russ. Phys. Surv. 136, 435–457 (1982).

    MathSciNet  ADS  Google Scholar 

  16. J. Marsden and A. Chorin, Mathematical Foundations of the Mechanics of Liquid (Springer, New York, 1993).

    Google Scholar 

  17. P. I. Holod and A. I. Klimyk, Mathematical Foundations of Symmetry Theory (Naukova Dumka, Kyiv, 1992) [in Ukrainian].

    Google Scholar 

  18. O. Repchenko, Field Physics (Galeria, Moscow, 2005).

    Google Scholar 

  19. C. H. Brans and R. H. Dicke, “Mach’s Principle and a Relativistic Theory of Gravitation,” Phys. Rev. 124, 925 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. S. Deser and R. Jackiw, “Time travel?” arXiv:hep-th/9206094 (1992).

  21. G. Dunner and R. Jackiw, “’Peierles Substitution’ and Chern-Simons Quantum Mechanics,” arXiv:hep-th/92004057 (1992).

  22. R. Jackiw and A. P. Polychronakos, “Dynamical Poincare Symmetry Realized by Field-Dependent Diffeomorhisms,” arXiv:hep-th/9809123 (1998).

  23. F. Wilchek, “QCD and Natural Philosophy,” Ann. Henry Poincare 4, 211–228 (2003).

    Article  ADS  Google Scholar 

  24. I. Bialynicky-Birula, Phys. Rev. 155, 1414 (1967); Phys. Rev. 166, 1505 (1968).

    Article  ADS  Google Scholar 

  25. H. Kleinert, Path Integrals, 2nd ed. (World Sci., Singapore, 1995), p. 685.

    MATH  Google Scholar 

  26. I. A. Klymyshyn, Relativistic Astronomy (Naukova Dumka, Kyiv, 1980) [in Ukrainian].

    Google Scholar 

  27. A. A. Logunov and M. A. Mestvirishvili, Relativistic Theory of Gravitation (Nauka, Moscow, 1989).

    Google Scholar 

  28. A. A. Logunov, The Theory of Gravity (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  29. A. A. Logunov, The Relativistic Theory of Gravitation (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  30. A. A. Logunov, Lectures on Relativity Theory and Gravitation (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  31. W. Pauli, Theory of Relativity (Oxford Univ., Oxford, 1958).

    MATH  Google Scholar 

  32. L. You, M. Lewensterin, R. Glauber, and J. Cooper, “Quantum Field Theory of Atoms Interacting with Photons III,” Phys. Rev. A 53, 329 (1996).

    Article  ADS  Google Scholar 

  33. R. Weinstock, “New Approach to Special Relativity,” Am. J. Phys. 33, 640–645 (1965).

    Article  MATH  ADS  Google Scholar 

  34. N. D. Mermin, “Relativity without Light,” Am. J. Phys. 52, 119–124 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  35. N. D. Mermin, It’s about Time: Understanding Einstein’s Relativity (Princeton Univ., Princeton, NJ, 2005).

    MATH  Google Scholar 

  36. L. B. Okun, “The Einstein Formula: E 0 = mc 2. Isn’t the Lord Laughing?” Usp. Fiz. Nauk 178, 541–555 (2008) [Phys. Usp. 51, 513 (2008)].

    Article  Google Scholar 

  37. L. B. Okun, “The Theory of Relativity and the Pythagorean Theorem,” Usp. Fiz. Nauk 178, 653–663 (2008) [Phys. Usp. 51, 622 (2008)].

    Article  Google Scholar 

  38. B. A. Kupershmidt, “Infinite-Dimensional Analogs of the Minimal Coupling Principle and of the Poincare Lemma for Differential Two-Forms,” Diff. Geom. Appl. 2, 275–293 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Y. A. Prykarpatsky, A. M. Samoilenko, and A. K. Prykarpatsky, “The Geometric Properties of Canonically Reduced Symplectic Spaces with Symmetry, their Relationship with Structures on Associated Principal Fiber Bundles and Some Applications,” Opusc. Math. 25, 287–298 (2005).

    MATH  MathSciNet  Google Scholar 

  40. B. Green, The Fabric of the Cosmos (Vintage Books, New York, 2004).

    Google Scholar 

  41. R. P. Newman, “The Global Structure of Simple Space-Times,” Comm. Math. Phys. 123, 17–52 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogolubov, N.N., Prykarpatsky, A.K. The vacuum structure and special relativity revisited: A field theory no-geometry approach within the Lagrangian and Hamiltonian formalisms. Phys. Part. Nuclei 41, 913–920 (2010). https://doi.org/10.1134/S1063779610060183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779610060183

Keywords

Navigation