Skip to main content
Log in

Magnetic field and symmetry effects in small quantum dots

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Shell phenomena in small quantum dots with a few electrons under a perpendicular magnetic field are discussed within a simple model. It is shown that various kinds of shell structures, which occur at specific values for the magnetic field lead to a disappearance of the orbital magnetization for particular magic numbers for noninteracting electrons in small quantum dots. Including the Coulomb interaction between two electrons, we found that the magnetic field gives rise to dynamical symmetries of a three-dimensional axially symmetric two-electron quantum dot with a parabolic confinement. These symmetries manifest themselves as near-degeneracy in the quantum spectrum at specific values of the magnetic field and are robust at any strength of the electron-electron interaction. A remarkable agreement between experimental data and calculations exhibits the important role of the thickness for the two-electron quantum dot for analysis of ground state transitions in a perpendicular magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Kastner, Phys. Today 46, 24 (1993).

    Article  ADS  Google Scholar 

  2. R. C. Ashoori, Nature (London) 379, 413 (1996).

    Article  ADS  Google Scholar 

  3. L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots (Springer, Berlin, 1998).

    Google Scholar 

  4. L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001).

    Article  ADS  Google Scholar 

  5. J. M. Elzerman, R. Hanson, L. H. W. van Beveren, et al., Lecture Notes in Physics (Springer, Berlin, 2005), Vol. 667, p. 25.

    Google Scholar 

  6. T. Chakraborty, Quantum Dots: A Survey of the Properties of Artificial Atoms (North-Holland, Amsterdam, 1999).

    Google Scholar 

  7. P. A. Maksym, H. Imamura, G. P. Mallon, and H. Aoki, J. Phys.: Condens. Matter 12, R299 (2000).

    Article  ADS  Google Scholar 

  8. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1975).

    Google Scholar 

  9. S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  10. M. Brack, Rev. Mod. Phys. 65, 677 (1993); W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993); V. O. Nesterenko, Phys. Part. Nucl. 23, 1665 (1992).

    Article  ADS  Google Scholar 

  11. L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, et al., in Mesoscopic Electron Transport, Proceedings of the NATO Advanced Study Institute on Mesoscopic Electron Transport, Ser. E345, Ed. by L. L. Sohn, L. P. Kouwenhoven and G. Schon (Kluwer, Dordrecht, Boston, 1997), p. 105.

    Google Scholar 

  12. Ch. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).

    Article  ADS  Google Scholar 

  13. V. Fock, Z. Phys. 47, 446 (1928); C. G. Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1930).

    Article  ADS  Google Scholar 

  14. W. Kohn, Phys. Rev. 123, 1242 (1961).

    Article  MATH  ADS  Google Scholar 

  15. L. Brey, N. F. Johnson, and B. I. Halperin, Phys. Rev. B 40, 10 647 (1989).

    Google Scholar 

  16. Q. P. Lie, K. Karrai, S. K. Yip, et al., Phys. Rev. B 43, 5151 (1991).

    Article  ADS  Google Scholar 

  17. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 64, 788 (1990).

    Article  ADS  Google Scholar 

  18. B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. B 48, 11 488 (1993).

  19. V. Gudmundsson and R. R. Gerhardts, Phys. Rev. B 43, 12 098 (1991).

    Google Scholar 

  20. D. Phannkuche and R. R. Gerhardts, Phys. Rev. B 44, 13 132 (1991).

    Google Scholar 

  21. M. Dineykhan, S. A. Zhaugasheva, and R. G. Nazmitdinov, Zh. Eksp. Teor. Phys. 119, 1210 (2001) [JETP 92, 1049 (2001)].

    Google Scholar 

  22. S. Tarucha, D. G. Austing, T. Honda, et al., Phys. Rev. Lett. 77, 3613 (1996).

    Article  ADS  Google Scholar 

  23. Y. Nishi, Y. Tokura, J. Gupta, et al., Phys. Rev. B 75, 121 301R (2007).

  24. Y. Nishi, P. A. Maksym, D. G. Austing, et al., Phys. Rev. B 74, 033306 (2006).

  25. M. Macucci, K. Hess, and G. J. Iafrate, Phys. Rev. B 48, 17 354 (1993); J. App. Phys. 77, 3267 (1995).

  26. W. D. Heiss and R. G. Nazmitdinov, Phys. Lett. A 222, 309 (1996).

    Article  ADS  Google Scholar 

  27. A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev. B 54, 5604 (1996).

  28. M. Dineykhan and R. G. Nazmitdinov, Phys. Rev. B 55, 13 707 (1997).

    Google Scholar 

  29. M. Stopa, Phys. Rev. B 54, 13 767 (1996).

    Google Scholar 

  30. S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).

    Article  ADS  Google Scholar 

  31. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

    Article  ADS  Google Scholar 

  32. W. D. Heiss and R. G. Nazmitdinov, Phys. Rev. B 55, 16 310 (1997).

    Google Scholar 

  33. W. D. Heiss and R. G. Nazmitdinov, Pis’ma Zh. Eksp. Teor. Phys. 68, 870 (1998) [JETP Lett. 68, 915 (1998)].

    Google Scholar 

  34. R. P. Feynman, Phys. Rev. 56, 340 (1939).

    Article  MATH  ADS  Google Scholar 

  35. H. A. Jahn and E. Teller, Proc. R. Soc. London A 161, 220 (1937).

    Article  MATH  ADS  Google Scholar 

  36. W. D. Heiss and R. G. Nazmitdinov, Phys. Rev. Lett. 73, 1235 (1994); Physica D 118, 134 (1998).

    Article  ADS  Google Scholar 

  37. S. Tarucha and D. G. Austing, Tokura Y, et al., Phys. Rev. Lett 84, 2485 (2000).

    Article  ADS  Google Scholar 

  38. W. D. Heiss, R. G. Nazmitdinov, and S. Radu, Phys. Rev. C 52, 3032 (1995).

    Article  ADS  Google Scholar 

  39. R. G. Nazmitdinov, N. S. Simonovic, and J. M. Rost, Phys. Rev. B 65, 155 307 (2002).

    Google Scholar 

  40. N. S. Simonovic and R. G. Nazmitdinov, Phys. Rev. B 67, 041305R (2003).

  41. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nauka, Moscow, 1974; Pergamon, Oxford, 1977).

    Google Scholar 

  42. J. M. Jauch and E. L. Hill, Phys. Rev. 57, 641 (1940).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. R. Blümel, C. Kappler, W. Quint, and H. Walther, Phys. Rev. A 40, 808 (1989).

    Article  ADS  Google Scholar 

  44. Y. Alhassid, E. A. Hinds, and D. Meschede, Phys. Rev. Lett. 59, 1545 (1987).

    Article  ADS  Google Scholar 

  45. I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  46. P. Hawrylak, Phys. Rev. Lett. 71, 3347 (1993).

    Article  ADS  Google Scholar 

  47. R. C. Ashoori, H. L. Stormer, J. S. Weiner, et al., Phys. Rev. Lett. 71, 613 (1993).

    Article  ADS  Google Scholar 

  48. T. Schmidt, M. Tewordt, R. H. Blick, et al., Phys. Rev. B 51, 5570 (1995).

    Article  ADS  Google Scholar 

  49. L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, et al., Science 278, 1788 (1997).

    Article  ADS  Google Scholar 

  50. J. J. Palacios, L. Martin-Moreno, G. Chiappe, et al., Phys. Rev. B 50, 5760 (1994).

    Article  ADS  Google Scholar 

  51. A. H. MacDonald, S.-R. Eric Yang, and M. D. Johnson, Aus. J. Phys. 46, 345 (1993).

    ADS  Google Scholar 

  52. M. Wagner, U. Merkt, and A. V. Chaplik, Phys. Rev. B 45, 1951 (1992); F. M. Peeters and V. A. Schweigert, Phys. Rev. B 53, 1468 (1996); M. Dineykhan and R. G. Nazmitdinov, J. Phys.: Condens. Matter. 11, L83 (1999).

    Article  ADS  Google Scholar 

  53. C. Ellenberger, T. Ihn, C. Yannouleas, et al., Phys. Rev. Lett. 96, 126 806 (2006).

  54. D. V. Melnikov and J-P. Leburton, Phys. Rev. B 73, 085 320 (2006).

    Google Scholar 

  55. R. G. Nazmitdinov and N. S. Simonovic, Phys. Rev. B, 193 306 (2007).

    Google Scholar 

  56. P. A. Maksym, Physica B 184, 385 (1993).

    Article  ADS  Google Scholar 

  57. Ll. Serra, R. G. Nazmitdinov, and A. Puente, Phys. Rev. B 68, 035341 (2003).

  58. C. Yannouleas and U. Landman, Phys. Rev. Lett. 85, 1726 (2000).

    Article  ADS  Google Scholar 

  59. B. Szafran, S. Bednarek, and J. Adamowski, J. Phys.: Condens. Matter 15, 4189 (2003).

    Article  ADS  Google Scholar 

  60. C. Creffield, Häusler W., Jefferson J. H., Sakar S., Phys. Rev. B 59, 10 719 (1999).

    Google Scholar 

  61. A. Puente, Ll. Serra, and R. G. Nazmitdinov, Phys. Rev. B 69, 125 315 (2004).

  62. A. J. Lichtenberg and M. A. Liberman, Regular and Stochastic Motion (Springer, New York, 1983).

    MATH  Google Scholar 

  63. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. (Academic, New York, 1994), pp. 898, 1096.

    MATH  Google Scholar 

  64. D. M. Zumbühl, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 93, 256 801 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazmitdinov, R.G. Magnetic field and symmetry effects in small quantum dots. Phys. Part. Nuclei 40, 71–92 (2009). https://doi.org/10.1134/S1063779609010055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779609010055

PACS numbers

Navigation