Skip to main content
Log in

Hamiltonian mechanics and its generalizations

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The basics of Hamiltonian mechanics and its generalizations are analyzed to find the most general laws of motion. The specific features of the variational principle in Hamiltonian mechanics (the problems of covariant formulation and boundary conditions) and the Maupertuis principle are discussed. The connection between Hamiltonian mechanics and statistical physics (Hamiltonian equations of motion preserve the Gibbs distribution and the evolution of nonequilibrium states of the harmonic oscillator in the thermal bath is described by the probability amplitudes) is underlined. The most well known generalizations, the Birkhoff and Nambu mechanics, are considered from this point of view. The Ostrogradsky mechanics, in which the Lagrangian depends on higher derivatives, theories not on symplectic manifolds, theories not on manifolds, and theories with complex variables are discussed. The simplest generalization of Poisson brackets for description of the evolution of nonequilibrium states results in the cosmological constant that arises in gravitational equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Prokhorov and S. V. Shabanov, “Hamiltonian Mechanics of Gauge Systems” (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  2. Y. Nambu, Phys. Rev. D: Part. Fields 7, 2405 (1973).

    ADS  MathSciNet  Google Scholar 

  3. L. V. Prokhorov, quant-ph/0406079.

  4. L. V. Prokhorov, gr-qc/0602023.

  5. L. V. Prokhorov, Fiz. Elem. Chastits At. Yadra 38, 696 (2007) [Phys. Part. Nucl. 38, 364 (2007)].

    Google Scholar 

  6. V. I. Arnold, Mathematical Methods of Classical Mechanics (2nd Eng. ed., Springer, Berlin, 1982; Nauka, Moscow, 1979).

    Google Scholar 

  7. A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems, Vol. 1 (Udmurdsky University, Izhevsk, 1999; CRC, London, 2004).

    MATH  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Fizmatgiz, Moscow, 1958; 3rd Eng. ed., Butterworth-Heinemann, Oxford, 1982).

    Google Scholar 

  9. M. V. Fedoryuk, Asymptotics: Integrals and Series (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  10. P. A. M. Dirac, The Principles of Quantum Mechanics (4th Eng. ed., Oxford University, Oxford, 1982; Fizmatlit, Moscow, 1960).

    Google Scholar 

  11. K. Jakobi, Lectures on Dynamics (Glavn. Red. Obshetekhnich. Literatury, Moscow, Leningrad, 1936) [in Russian].

    Google Scholar 

  12. Ya. G. Sinai, Topics in Ergodic Theory (Princeton University, Princeton, 1993; FAZIS, Moscow, 1996).

    Google Scholar 

  13. L. V. Prokhorov, Vestn. SPbGU, Ser. 4., No. 4, 3 (2005).

  14. V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  15. B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, in Current Problems in Mathematics. Fundamental Directions (Moscow, 1985), Vol. 4, p. 179 [in Russian].

    MathSciNet  Google Scholar 

  16. S. V. Shabanov, J. Phys. A 25, L1245 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. A. A. Martinez-Merino and M. Montesinos, Ann. Phys. (N.Y.) 321, 318 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. R. Finkelstein and M. Villasante, Phys. Rev. D: Part. Fields 33, 1666 (1986).

    ADS  MathSciNet  Google Scholar 

  19. G. D. Birkhoff, Dynamical Systems (AMS Colloq. Publ. V. IX, Hamburg, 1927).

    MATH  Google Scholar 

  20. M. Santilli, Foundations of Theoretical Mechanics, Vols. I, II (Springer, Berlin, 1978, 1983).

    MATH  Google Scholar 

  21. J. McEwan, Found. Phys. 23, 313 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  22. Th. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Math. Phys. K1, p. 966 (1921).

  23. O. Klein, Z. Phys. 37, 895 (1926).

    Article  ADS  Google Scholar 

  24. H. Mandel, Z. Phys. 39, 136 (1926).

    Article  ADS  Google Scholar 

  25. V. Fock, Z. Phys. 39, 226 (1926).

    Article  ADS  Google Scholar 

  26. M. Green, J. Schwarz, and E. Witten, Superstring Theory (Cambridge University, Cambridge, 1987; Mir, Moscow, 1990), Vols. 1, 2.

    MATH  Google Scholar 

  27. L. V. Prokhorov, Space As a Network (NIIKh St. Petersburg State University, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  28. G. M. Zaslavskii, Physics of Chaos in Hamiltonian Systems (Izhevsk, Moscow, 2004; Imperial College, London, 1998).

    Google Scholar 

  29. N. I. Gerasimenko and B. S. Pavlov, Teor. Mat. Fiz. 74, 345 (1988).

    MathSciNet  Google Scholar 

  30. Yu. V. Pokornyi, et al., Differential Equations on Networks (Geometric Graphs) (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  31. M. Ostrogradsky, Mem. Acad. St. Petersburg 4, 385 (1850).

    Google Scholar 

  32. V. V. Nesterenko, J. Phys. A 22, 1673 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. L. V. Prokhorov, Yad. Fiz. 35, 229 (1982) [Sov. J. Nucl. Phys. 35, 129 (1982)].

    MathSciNet  Google Scholar 

  34. M. Mondragon and M. Montesinos, Int. J. Mod. Phys. A 19, 2473 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. A. Sergi, cond-mat/0508193.

  36. M. Milgrom, Astrophys. J. 270, 365 (1983); Astrophys. J. 270, 371 (1983); Astrophys. J. 270, 384 (1983).

    Article  ADS  Google Scholar 

  37. J. D. Bekenstein, Phys. Rev. D: Part. Fields 70, 083509 (2004).

    Google Scholar 

  38. J. H. Gundlach, et al., Phys. Rev. Lett. 98, 150801 (2007).

  39. S. Dodelson and M. Liguori, Phys. Rev. Lett. 97, 231301 (2006).

    Google Scholar 

  40. H.-C. Lee, Am. J. Math. 65, 433 (1943).

    Article  MATH  Google Scholar 

  41. V. G. Lemlein, Dokl. Akad. Nauk SSSR 115, 655 (1957).

    MATH  MathSciNet  Google Scholar 

  42. Ph. Tondeur, Comm. Math. Helvetici 36, 234 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  43. B. V. Fedosov, J. Diff. Geom. 40, 213 (1994).

    MATH  MathSciNet  Google Scholar 

  44. I. Gelfand, V. Retakh, and M. Shubin, Advan. Math. 136, 104 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  45. O. I. Mokhov, Symplectic and Poisson Geometry on Loop Spaces of Smooth Manifolds and Integrable Equations (Izhevsk, Moscow, 2004) [in Russian].

    Google Scholar 

  46. D. I. Blokhintsev, Usp. Fiz. Nauk 122, 745 (1977) [Sov. Phys. Usp. 20, 683 (1977)].

    Google Scholar 

  47. A. G. Lisi, “Quantum Mechanics from a Universal Action Reservoir,” physics/0605068.

  48. C. Lanczos, Analytical Dynamics (Mir, Moscow, 1965) [in Russian].

    Google Scholar 

  49. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry—Methods and Applications, Parts I–III (Nauka, Moscow, 1979; Springer, New York, 1984, 1985, 1990).

    Google Scholar 

  50. V. V. Nesterenko, Phys. Rev. D 75, 087703 (2007).

    Google Scholar 

  51. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (4th Eng. ed., Cambridge University, Cambridge, 1989; Glavn. Red. Tekhniko-Teoretich. Literatury, Moscow, 1937).

    Google Scholar 

  52. Variation Principles of Mechanics, Ed. By L. S. Polak (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  53. M. V. Ostrogradsky, Complete Collected Works (Izd-vo Akad. nauk Ukrainskoi SSR, Kiev, 1961), Vol. 2 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.V. Prokhorov, 2008, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2008, Vol. 39, No. 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokhorov, L.V. Hamiltonian mechanics and its generalizations. Phys. Part. Nuclei 39, 810–833 (2008). https://doi.org/10.1134/S1063779608050055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779608050055

PACS numbers

Navigation