Skip to main content
Log in

Gauge theory in deformed \( \mathcal{N} \) = (1, 1) superspace

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review the non-anticommutative Q-deformations of \( \mathcal{N} \) = (1, 1) supersymmetric theories in four-dimensional Euclidean harmonic superspace. These deformations preserve chirality and harmonic Grassmann analyticity. The associated field theories arise as a low-energy limit of string theory in specific backgrounds and generalize the Moyal-deformed supersymmetric field theories. A characteristic feature of the Q-deformed theories is the half-breaking of supersymmetry in the chiral sector of the Euclidean superspace. Our main focus is on the chiral singlet Q-deformation, which is distinguished by preserving the SO(4) ∼ Spin(4) “Lorentz” symmetry and the SU(2) R-symmetry. We present the superfield and component structures of the deformed \( \mathcal{N} \) = (1, 0) supersymmetric gauge theory as well as of hypermultiplets coupled to a gauge superfield: invariant actions, deformed transformation rules, and so on. We discuss quantum aspects of these models and prove their renormalizability in the Abelian case. For the charged hypermultiplet in an Abelian gauge superfield background we construct the deformed holomorphic effective action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. Mohapatra, Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics (Springer, New York, 2003); M. Drees, R. M. Godbole, and P. Roy, Theory and Phenomenology of Sparticles: An Account of Four-Dimensional N = 1 Supersymmetry in High Energy Physics (World Sci., Hackensach, 2004).

    Google Scholar 

  2. E. D’Hoker and D. H. Phong, “Lectures on Supersymmetric Yang-Mills Theory and Integrable Systems,” in Proc. of Summer School on Theoretical Physics at the End of the Twentieth Century, Alberta, Banff, July 10–27, 1999 (Springer, New York, 1999), pp. 1–125.

    Google Scholar 

  3. I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity: Or a Walk through Superspace (Institute of Physics, Bristol, 1998).

    MATH  Google Scholar 

  4. S. J. Gates, Jr., M. T. Grisaru, M. Rocek, and W. Siegel, “Superspace or One Thousand and One Lessons in Supersymmetry,” Front. Phys. 58, 1–548 (1983).

    MathSciNet  Google Scholar 

  5. N. Seiberg and E. Witten, “Electric-Magnetic Duality, Monopole Condensation and Confinement in \( \mathcal{N} \) = 2 Supersymmetric Yang-Mills Theory,” Nucl. Phys. B 426, 19–52 (1994); hep-th/9407087.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. E. D’Hoker and D. Z. Freedman, Supersymmetric Gauge Theories and the AdS/CFT Correspondence, in Lectures Given at Theoretical Advanced Study Institute in Elementary Particle Physics TASI 2001: Strings, Branes and EXTRA Dimensions, Boulder, Colorado, June 3–29, 2001, hep-th/0201253; J. L. Petersen, “Introduction to the Maldacena Conjecture on AdS/CFT,” Int. J. Mod. Phys. A 14, 3597–3672 (1999), hep-th/9902131; O. Aharony, S. S. Gubser, J. M. Maldacena, et al., “Large N Field Theories, String Theory and Gravity,” Phys. Rep. 323, 183–386 (2000), hep-th/9905111.

  7. S. Ferrara and M. A. Lledó, “Some Aspects of Deformations of Supersymmetric Field Theories,” J. High Energy Phys. 0005, 008 (2000); hep-th/0002084; D. Klemm, S. Penati, and L. Tamassia, “Non(anti)commutative Superspace,” Class. Quant. Grav. 20, 2905 (2003); hep-th/0104190.

    Article  ADS  Google Scholar 

  8. R. J. Szabo, “Quantum Field Theory on Noncommutative Spaces,” Phys. Rep. 378, 207–299 (2003); hep-th/0109162; I. Y. Arefeva, D. M. Belov, A. A. Giryavets, et al., “Noncommutative Field Theories and (Super) String Field Theories,” in Proc. of the 11th Jorge A. Swieca School on Particles and Fields, Campos do Jordao, Brazil, 2001, pp. 1–163; hep-th/0111208; A. Micu and M. M. Sheikh-Jabbari, “Noncommutative Φ4 Theory at Two Loops,” J. High Energy Phys. 0101, 025 (2001); hep-th/0008057.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. N. Seiberg and E. Witten, “String Theory and Noncommutative Geometry,” J. High Energy Phys. 9909, 032 (1999); hep-th/9908142.

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Ivanov and A. Smilga, “Cryptoreality of Nonanticommutative Hamiltonians,” J. High Energy Phys. 0707, 036 (2007); hep-th/0703038.

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Dimitrijevic, P. Aschieri, V. Radovanović, and J. Wess, “Towards Noncommutative SUSY Field Theories,” in Proc. of the Conference on Supersymmetries and Quantum Symmetries, BLTP, JINR, Dubna, July 30–Aug. 4, 2007.

  12. N. Seiberg, “Noncommutative Superspace, N = 1/2 Supersymmetry, Field Theory and String Theory,” J. High Energy Phys. 0306, 010 (2003); hep-th/0305248.

    Article  ADS  Google Scholar 

  13. J. de Boer, P. A. Grassi, and P. van Nieuwenhuizen, “Non-Commutative Superspace from String Theory,” Phys. Lett. B 574, 98–104 (2003); hep-th/0302078; N. Berkovits and N. Seiberg, “Superstrings in Graviphoton Background and N = 1/2 + 3/2 Supersymmetry,” J. High Energy Phys. 0307, 010 (2003); hep-th/0306226; M. Billo, M. Frau, I. Pesando, and A. Lerda, “N = 1/2 Gauge Theory and Its Instanton Moduli Space from Open Strings in RR Background,” J. High Energy Phys. 0405, 023 (2004); hep-th/0402160.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. H. Ooguri and C. Vafa, “The C-Deformation of Gluino and Non-Planar Diagrams,” Adv. Theor. Math. Phys. 7, 53–85 (2003); hep-th/0302109; H. Ooguri and C. Vafa, “Gravity Induced C-Deformation,” Adv. Theor. Math. Phys. 7, 405–417 (2004); hep-th/0303063.

    MathSciNet  Google Scholar 

  15. R. Britto and B. Feng, “N = 1/2 Wess-Zumino Model Is Renormalizable,” Phys. Rev. Lett. 91, 201 601 (2003); hep-th/0307165; R. Britto, B. Feng, S.-J. Rey, “Deformed Superspace, N = 1/2 Supersymmetry and Nonrenormalization Theorems,” J. High Energy Phys. 0307, 067 (2003); hep-th/0306215.

    Google Scholar 

  16. A. Romagnoni, “Renormalizability of N = 1/2 Wess-Zumino Model in Superspace,” J. High Energy Phys. 0310, 016 (2003); hep-th/0307209; M. T. Grisaru, S. Penati, and A. Romagnoni, “Nonanticommutative Superspace and N = 1/2 WZ Model,” Class. Quant. Grav. 21, S1391–1398 (2004); hep-th/0401174; M. T. Grisaru, S. Penati, and A. Romagnoni, “Two-Loop Renormalization for Nonanticommutative N = 1/2 Supersymmetric WZ Model,” J. High Energy Phys. 0308, 003 (2003); hep-th/0307099.

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Penati and A. Romagnoni, “Covariant Quantization of N = 1/2 SYM Theories and Supergauge Invariance,” J. High Energy Phys. 0502, 064 (2005); hep-th/0412041; M. T. Grisaru, S. Penati, and A. Romagnoni, “Non(Anti)Commutative SYM Theory: Renormalization in Superspace,” J. High Energy Phys. 0602, 043 (2006); hep-th/0510175.

    Article  ADS  MathSciNet  Google Scholar 

  18. O. Lunin and S.-J. Rey, “Renormalizability of Non(Anti)Commutative Gauge Theories with N = 1/2 Supersymmetry,” J. High Energy Phys. 0309, 045 (2003); hep-th/0307275; D. Berenstein and S.-J. Rey, “Wilsonian Proof for Renormalizability of N = 1/2 Supersymmetric Field Theories,” Phys. Rev. D 68, 121701 (2003); hep-th/0308049; R. Britto, B. Feng, and S.-J. Rey, “Non(Anti)Commutative Superspace, UV/IR Mixing and Open Wilson Lines,” J. High Energy Phys. 0308, 001 (2003); hep-th/0307091.

    Article  ADS  MathSciNet  Google Scholar 

  19. I. Jack, D. R. T. Jones, and L. A. Worthy, “One-Loop Renormalization of N = 1/2 Supersymmetric Gauge Theory,” Phys. Lett. B 611, 199–206 (2005); hep-th/0412009; I. Jack, D. R. T. Jones, and L. A. Worthy, “One-Loop Renormalization of General N = 1/2 Supersymmetric Gauge Theory,” Phys. Rev. D 72, 065002 (2005); hep-th/0505248; I. Jack, D. R. T. Jones, and L. A. Worthy, “One-Loop Renormalization of Massive N = 1/2 Supersymmetric Gauge Theory,” Preprint LTH-708 (2006); hep-th/0607194; I. Jack, D. R. T. Jones, and L. A. Worthy, “One-Loop Renormalization of N = 1/2 Supersymmetric Gauge Theory in the Adjoint Representation,” Preprint LTH-709 (2006); hep-th/0607195.

    Article  ADS  MathSciNet  Google Scholar 

  20. A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “Chiral Effective Potential in N = 1/2 Non-Commutative Wess-Zumino Model,” J. High Energy Phys. 0407, 011 (2004); hep-th/0405063; O. D. Azorkina, A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “Generic Chiral Superfield Model on Nonanticommutative N = 1/2 Superspace,” Mod. Phys. Lett. A 20, 1423–1436 (2005); hep-th/0502008; O. D. Azorkina, A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “One-Loop Effective Potential in N = 1/2 Generic Chiral Superfield Model,” Phys. Lett. B 635, 50–55 (2006); hep-th/0601045; O. D. Azorkina, A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “Construction of Effective Action in Nonanticommutative Supersymmetric Field Theories,” Phys. Lett. B 633, 389–396 (2006); hep-th/0509193.

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Ivanov, O. Lechtenfeld, and B. Zupnik, “Nilpotent Deformations of N = 2 Superspace,” J. High Energy Phys. 0402, 012 (2004); hep-th/0308012.

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Ferrara and E. Sokatchev, “Non-Anticommutative N = 2 Super-Yang-Mills Theory with Singlet Deformation,” Phys. Lett. B 579, 226–234 (2004); hep-th/0308021.

    Article  ADS  MathSciNet  Google Scholar 

  23. A. De Castro, E. Ivanov, O. Lechtenfeld, and L. Quevedo, “Non-Singlet Q-Deformation of the N = (1,1) Gauge Multiplet in Harmonic Superspace,” Nucl. Phys. B 747, 1–24 (2006); hep-th/0510013; A. De Castro and L. Quevedo, “Non-singlet Q-deformed N = (1,0) and N = (1,1/2) U(1) Actions,” Phys. Lett. B 639, 117–123 (2006); hep-th/0605187.

    Article  MATH  ADS  Google Scholar 

  24. S. V. Ketov and S. Sasaki, “SU(2) × U(1) Non-Anticommutative N = 2 Supersymmetric Gauge Theory,” Int. J. Mod. Phys. A 20, 4021–4034 (2005); hep-th/0407211; S. V. Ketov and S. Sasaki, “Non-Anticommutative N = 2 Supersymmetric SU(2) Gauge Theory,” Phys. Lett. B 597, 105–111 (2004); hep-th/0405278; S. V. Ketov and S. Sasaki, “BPS-Type Equations in the Non-Anticommutative N = 2 Supersymmetric U(1) Gauge Theory,” Phys. Lett. B 595, 530–536 (2004); hep-th/0404119.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. T. Araki, K. Ito, and A. Ohtsuka, “N = 2 Supersymmetric U(1) Gauge Theory in Noncommutative Harmonic Superspace,” J. High Energy Phys. 0401, 046 (2004); hep-th/0401012; T. Araki, K. Ito, and A. Ohtsuka, “Deformed Supersymmetry in Non(Anti)Commutative N = 2 Supersymmetric U(1) Gauge Theory,” Phys. Lett. B 606, 202–210 (2005); hep-th/0410203; T. Araki, K. Ito, and A. Ohtsuka, “Non(Anti)Commutative N = (1,1/2) Supersymmetric U(1) Gauge Theory,” J. High Energy Phys. 0505, 074 (2005); hep-th/0503224; T. Araki, T. Takashima, and S. Watamura, “On a Superfield Extension of the ADHM Construction and N = 1 Super Instantons,” J. High Energy Phys. 0508, 065 (2005); hep-th/0506112; K. Ito and H. Nakajima, “Non(Anti)Commutative N = 2 Supersymmetric U(N) Gauge Theory and Deformed Instanton Equations,” Phys. Lett. B 629, 93–101 (2005); hep-th/0508052.

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Ferrara, E. Ivanov, O. Lechtenfeld, et al., “Non-Anticommutative Chiral Singlet Deformation of N = (1,1) Gauge Theory,” Nucl. Phys. B 704, 154–180 (2005); hep-th/0405049.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. K. Ito and S. Sasaki, “Non(Anti)Commutative N = 2 Supersymmetric Gauge Theory from Superstrings in the Graviphoton Background,” J. High Energy Phys. 0611, 004 (2006); hep-th/0608143; K. Ito, Y. Kobayashi, and S. Sasaki, “Deformation of N = 4 Super Yang-Mills Theory in Graviphoton Background,” J. High Energy Phys. 0704, 011 (2007); hep-th/0612267.

    Article  ADS  MathSciNet  Google Scholar 

  28. P. P. Kulish, “Twists of Quantum Groups and Noncommutative Field Theory,” hep-th/0606056; B. M. Zupnik, “Deformations of Euclidean Supersymmetries,” Theor. Math. Phys. 147, 670–686 (2006); B. M. Zupnik, “Twist-Deformed Supersymmetries in Non-Anticommutative Superspaces,” Phys. Lett. B 627, 208–216 (2005); hep-th/0506043; M. Ihl and C. Sämann, “Drinfeld-Twisted Supersymmetry and Non-Anticommutative Superspace,” J. High Energy Phys. 0601, 065 (2006); hep-th/0506057; Y. Kobayashi and S. Sasaki, “Lorentz Invariant and Supersymmetric Interpretation of Noncommutative Quantum Field Theory,” Int. J. Mod. Phys. A 20, 7175–7188 (2005); hep-th/0410164.

    Google Scholar 

  29. E. Ivanov, O. Lechtenfeld, and B. Zupnik, “Non-Anticommutative Deformation of N = (1,1) Hypermultiplets,” Nucl. Phys. B 707, 69–86 (2005); hep-th/0408146.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. E. A. Ivanov and B. M. Zupnik, “Non-Anticommutative Deformations of N = (1,1) Supersymmetric Theories,” Theor. Math. Phys. 142, 197 (2005); hep-th/0405185.

    MathSciNet  Google Scholar 

  31. T. Araki and K. Ito, “Singlet Deformation and Non(Anti)Commutative N = 2 Supersymmetric U(1) Gauge Theory,” Phys. Lett. B 595, 513–520 (2004); hep-th/0404250.

    Article  ADS  MathSciNet  Google Scholar 

  32. I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, et al., “Renormalizability of Non-Anticommutative N = (1,1) Theories with Singlet Deformation,” Nucl. Phys. B 740, 358–385 (2006); hep-th/0511234.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. I. L. Buchbinder, O. Lechtenfeld, and I. B. Samsonov, “Vector-Multiplet Effective Action in the Non-Anticommutative Charged Hypermultiplet Model,” Nucl. Phys. B 758, 185–203 (2006); hep-th/0608048.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic Superspace: Key to N = 2 Supersymmetric Theories,” JETP Lett. 40, 912 (1984); A. Galperin, E. Ivanov, S. Kalitzin, et al., “Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace,” Class. Quant. Grav. 1, 469 (1984).

    ADS  Google Scholar 

  35. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, Harmonic Superspace (Cambridge Univ. Press, Cambridge, 2001).

    MATH  Google Scholar 

  36. B. M. Zupnik, “The Action of the Supersymmetric N = 2 Gauge Theory in Harmonic Superspace,” Phys. Lett. B 183, 175 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  37. I. L. Buchbinder, E. I. Buchbinder, E. A. Ivanov, et al., “Effective Action of the N = 2 Maxwell Multiplet in Harmonic Superspace,” Phys. Lett. B 412, 309–319 (1997); hep-th/9703147; E. I. Buchbinder, I. L. Buchbinder, E. A. Ivanov, and S. M. Kuzenko, “Central Charge as the Origin of Holomorphic Effective Action in N = 2 Gauge Theory,” Mod. Phys. Lett. A 13, 1071–1082 (1998); hep-th/9803176.

    Article  ADS  MathSciNet  Google Scholar 

  38. I. L. Buchbinder and I. B. Samsonov, “On Holomorphic Effective Actions of Hypermultiplets Coupled to External Gauge Superfields,” Mod. Phys. Lett. A 14, 2537–2544 (1999); hep-th/9909183; S. Eremin and E. Ivanov, “Holomorphic Effective Action of N = 2 SYM Theory from Harmonic Superspace with Central Charges,” Mod. Phys. Lett. A 15, 1859–1878 (2000); hep-th/9908054.

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Dine and N. Seiberg, “Comments on Higher Derivative Operators in Some SUSY Field Theories,” Phys. Lett. B 409, 239–244 (1997); hep-th/9705057; V. Periwal and R. Von Unge, “Accelerating D-Branes,” Phys. Lett. B 430, 71–76 (1998); hep-th/9801121; F. Gonzalez-Rey and M. Rocek, “Nonholomorphic N = 2 Terms in N = 4 SYM: One Loop Calculation in N = 2 Superspace,” Phys. Lett. B 434, 303–311 (1998); hep-th/9804010; D. A. Lowe and R. Von Unge, “Constraints on Higher Derivative Operators in Maximally Supersymmetric Gauge Theory,” J. High Energy Phys. 9811, 014 (1998); hep-th/9811017.

    Article  ADS  MathSciNet  Google Scholar 

  40. I. L. Buchbinder, E. I. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “The Background Field Method for N = 2 Super Yang-Mills Theories in Harmonic Superspace,” Phys. Lett. B 417, 61–71 (1998); hep-th/9704214; I. L. Buchbinder and S. M. Kuzenko, “Comments on the Background Field Method in Harmonic Superspace: Nonholomorphic Corrections in N = 4 SYM,” Mod. Phys. Lett. A 13, 1623–1636 (1998); hep-th/9804168; E. I. Buchbinder, I. L. Buchbinder, and S. M. Kuzenko, “Nonholomorphic Effective Potential in N = 4 SU(n) SYM,” Phys. Lett. B 446, 216–223 (1999); hep-th/9810239; I. L. Buchbinder, S. M. Kuzenko, and A. A. Tseytlin, “On Low-Energy Effective Action in N = 2,4 Superconformal Theories in Four Dimensions,” Phys. Rev. D 62, 045001 (2000); hep-th/9911221; E. I. Buchbinder et al., “Low-energy Effective Action in N = 2 Supersymmetric Field Theories,” Phys. Part. Nucl. 32, 641–674 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  41. I. L. Buchbinder and E. A. Ivanov, Complete N = 4 Structure of Low-Energy Effective Action in N = 4 Super Yang-Mills Theories, Phys. Lett. B 524, 208–216 (2002); hep-th/0111062; I. L. Buchbinder, E. A. Ivanov, and A. Yu. Petrov, “Complete Low-Energy Effective Action in N = 4 SYM: A Direct N = 2 Supergraph Calculation,” Nucl. Phys. B 653, 64–84 (2003); hep-th/0210241; A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “One-loop Effective Action of N = 4 SUM Theory in the Hypermultiplet Sector: Low-Energy Approximation and Beyond,” Phys. Rev. D 68, 065024 (2003); hep-th/0304046; I. L. Buchbinder and N. G. Pletnev, “Construction of One-loop N = 4 SYM Effective Action in the Harmonic Superspace Approach,” J. High Energy Phys. 0509, 073 (2005); hep-th/0504216; I. L. Buchbinder and N. G. Pletnev, “Hypermultiplet Dependence of One-loop Effective Action in the N = 2 Superconformal Theories,” J. High Energy Phys. 0704, 096 (2007); hep-th/0611145.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. N. Dragon and S. M. Kuzenko, “The Higgs Mechanism in N = 2 Superspace,” Nucl. Phys. B 508, 229–244 (1997); hep-th/9705027; S. M. Kuzenko and I. N. McArthur, “Effective Action of N = 4 Super Yang-Mills: N = 2 Superspace Approach,” Phys. Lett. B 506, 140–146 (2001); hep-th/0101127; S. M. Kuzenko and I. N. McArthur, “Hypermultiplet Effective Action: N = 2 Superspace Approach,” Phys. Lett. B 513, 213–222 (2001); hep-th/0105121.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. C. Sämann and M. Wolf, “Constraint and Super Yang-Mills Equations on the Deformed Superspace ℝ (4|16) ,” J. High Energy Phys. 0403, 048 (2004); hep-th/0401147.

    Article  Google Scholar 

  44. A. Imaanpur, “Supersymmetric D3-Branes in Five-Form Flux,” J. High Energy Phys. 0503, 030 (2005); hep-th/0501167; R. Abbaspur and A. Imaanpur, “Nonanticommutative Deformation of N = 4 SYM Theory: The Myers Effect and Vacuum States,” J. High Energy Phys. 0601, 017 (2006); hep-th/0509220.

    Article  ADS  MathSciNet  Google Scholar 

  45. K. Ito, H. Nakajima, and S. Sasaki, “Deformation of Super Yang-Mills Theories in R-R 3-Form Background,” J. High Energy Phys. 0707, 068 (2007); arXiv:0705.3532v3 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Buchbinder.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchbinder, I.L., Ivanov, E.A., Lechtenfeld, O. et al. Gauge theory in deformed \( \mathcal{N} \) = (1, 1) superspace. Phys. Part. Nuclei 39, 759–797 (2008). https://doi.org/10.1134/S1063779608050031

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779608050031

PACS numbers

Navigation