Skip to main content
Log in

SU(4) harmonic superspace and supersymmetric gauge theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the harmonic superspace formalism in N=4 supersymmetry based on SU(4)/SU(2)×SU(2)×U(1) harmonics, which was previously used in Abelian gauge theory. We propose a transformation of non-Abelian constraints in the standard N=4 superspace into a superfield equation for two basic analytic superfields: an independent strength W of dimension one and a dimensionless harmonic four-prepotential V of the U(1) charge two. These constraint equations I explicitly depend on the Grassmann coordinates ѳ, although they are covariant under nonstandard N=4 supersymmetry transformations. The component expansion of superfield equations I generates the known equations for physical fields of the N=4 supermultiplet, with the auxiliary fields vanishing or expressible in terms of physical fields on the mass shell. In the harmonic formalism of N=4 supergauge theory off the mass shell, we construct a gauge-invariant action A(W, V) for two unconstrained non-Abelian analytic superfields W and V; this action contains theta factors in each term and is invariant under the SU(4) automorphism group and scaling transformations. At the level of component fields, this model acquires an interaction of two infinite-dimensional N=4 supermultiplets involving physical and auxiliary fields. The action A(W, V) generates analytic equations of motion II, alternative to the superfield constraints I. Both sets of equations give equivalent equations for physical component fields of the N=4 gauge supermultiplet. We construct a nonlinear effective interaction for the Abelian harmonic superfield W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Sohnius, Nucl. Phys. B, 136, 461–474 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, Harmonic Superspace, Cambridge Univ. Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  3. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, Class. Q. Grav., 2, 155–166 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. A. Galperin, E. Ivanov, and V. Ogievetsky, Phys. Atom. Nucl., 46, 543–549 (1988).

    Google Scholar 

  5. F. Delduc and J. McCabe, Class. Q. Grav., 6, 233–254 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. E. A. Ivanov and B. M. Zupnik, Nucl. Phys. B, 618, 3–20 (2001); arXiv:hep-th/0110074v2 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. B. M. Zupnik, Theor. Math. Phys., 140, 1121–1134 (2004); arXiv:hep-th/0308204v1 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. I. L. Buchbinder, E. A. Ivanov, I. B. Samsonov, and B.M. Zupnik, Nucl. Phys. B, 689, 91–107 (2004); arXiv:hepth/ 0403053v2 (2004); JHEP, 1201, 001 (2012); arXiv:1111.4145v2 [hep-th] (2011).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. E. Ivanov, S. Kalitzin, Nguen Ai Viet, and V. Ogievetsky, J. Phys. A, 18, 3433–3443 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Sokatchev, Phys. Lett. B, 217, 489–495 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  11. E. Witten, Phys. Lett. B, 77, 394–398 (1978).

    Article  ADS  Google Scholar 

  12. G. G. Hartwell and P. S. Howe, Internat. J. Mod. Phys. A, 10, 3901–3919 (1995); arXiv:hep-th/9412147v2 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. P. S. Howe and P. C. West, Phys. Lett. B, 400, 307–313 (1997); arXiv:hep-th/9611075v1 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  14. P. S. Howe, “On harmonic superspace,” in: Supersymmetries and Quantum Symmetries (Lect. Notes Phys., Vol. 524, J. Wess and E. A. Ivanov, eds.), Springer, Berlin (1999), pp. 68–78; arXiv:hep-th/9812133v1 (1998).

    Chapter  Google Scholar 

  15. L. Andrianopoli, S. Ferrara, E. Sokatchev, and B. Zupnik, Adv. Theoret. Math. Phys., 3, 1149–1197 (2000); arXiv:hep-th/9912007v3 (1999).

    MathSciNet  Google Scholar 

  16. I. Antoniadis, S. Hohengger, K. S. Narain, and E. S. Sokatchev, Nucl. Phys. B, 794, 348–380 (2008); arXiv:0708.0482v1 [hep-th] (2007).

    Article  MATH  ADS  Google Scholar 

  17. I. L. Buchbinder, O. Lechtenfeld, and I. B. Samsonov, Nucl. Phys. B, 802, 208–246 (2008); arXiv:0804.3063v3 [hep-th] (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. D. V. Belyaev and I. B. Samsonov, JHEP, 1104, 112 (2011); arXiv:1103.5070v2 [hep-th] (2011); 1109, 056 (2011); arXiv:1106.0611v2 [hep-th] (2011).

    Article  MathSciNet  ADS  Google Scholar 

  19. I. L. Buchbinder and N. G. Pletnev, Nucl. Phys. B, 877, 936–955 (2013); arXiv:1307.6300v3 [hep-th] (2013). 1147

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 184, No. 2, pp. 269–289, August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zupnik, B.M. SU(4) harmonic superspace and supersymmetric gauge theory. Theor Math Phys 184, 1129–1147 (2015). https://doi.org/10.1007/s11232-015-0322-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0322-y

Keywords

Navigation