Skip to main content
Log in

Potential energy of a heavy nuclear system in fusion-fission processes

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We discuss the problem of description of low-energy nuclear dynamics and the derivation of a multi-dimensional potential energy surface that depends on several collective degrees of freedom and allows a unified analysis of deep inelastic scattering, fusion, and fission processes. A unified description is required due to the strong coupling and significant overlapping of these reaction channels in heavy nuclear systems, which are used, in particular, for synthesis of superheavy elements. The multidimensional adiabatic potential is derived based on an extended versio of the two-center shell model. This model leads to a correct asymptotic value and height of the Coulomb barrier in the entrance channel (fusion), and appropriate behavior in the exit channel, giving the required mass and energy distributions of reaction products and fission fragments. The derived driving potential is proposed to be applied in a consistent dynamic analysis of low-energy interactions of heavy nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, et al., Phys. Rev. C 70, 064609 (2004).

  2. M. G. Itkis, J. Aysto, S. Beghini, et al., Nucl. Phys. A 734, 136 (2004).

    Article  ADS  Google Scholar 

  3. W.U. Schröder and J.R. Huizenga, in Damped Nuclear Reactions, in Treatise on Heavy-Ion Science, Ed. by D.A. Bromley (Plenum Press, New York), Vol. 2, p. 140.

  4. V. Zagrebaev and W. Greiner, J. Phys. G 31, 825 (2005).

    Article  ADS  Google Scholar 

  5. C. L. Jiang, K. E. Rehm, H. Esbensen, et al., Phys. Rev. C 71, 044613 (2005).

  6. V. V. Volkov, Deep Inelastic Nuclear Reactions (Energoizdat, Moscow, 1982) [in Russian]; Phys. Rep. 44, 93 (1978).

    Google Scholar 

  7. J. Peter, C. Ngo, F. Plasil, et al., Nucl. Phys. A 279, 110 (2004).

    Article  ADS  Google Scholar 

  8. A. C. Berriman, D. J. Hinde, M. Dasgupta, et al., Nature 413, 144 (2001).

    Article  ADS  Google Scholar 

  9. R. Bass, Nuclear Reactions with Heavy Ions (Springer-Verlag, 1980).

  10. W. Scheid, R. Ligensa, and W. Greiner, Phys. Rev. Lett. 21, 1479 (1968).

    Article  ADS  Google Scholar 

  11. W. Greiner, J. Y. Park, and W. Scheid, Nuclear Molecules (World Sci., Singapore, 1995).

    Google Scholar 

  12. V. I. Zagrebaev and V. V. Samarin, Yad. Fiz. 70, 990 (2007).

    Google Scholar 

  13. V. I. Zagrebaev, Phys. Rev. C 64, 034606 (2001).

    Google Scholar 

  14. V. I. Zagrebaev, J. Nucl. Rad. Sci. 3(1), 13 (2002).

    Google Scholar 

  15. V. I. Zagrebaev, in Tours Symposium on Nuclear Physics, Ed. by M. Arnould et al., AIP Conf. Proc. No. 704 (AIP, Melville, New York, 2004).

    Google Scholar 

  16. U. Mosel, J. Maruhn, and W. Greiner, Phys. Lett. B 34, 587 (1971).

    Article  ADS  Google Scholar 

  17. J. Maruhn and W. Greiner, Z. Phys. A 251, 431 (1972).

    Google Scholar 

  18. H. J. Krappe, J. R. Nix, and A. J. Sierk, Phys. Rev. C 20, 992 (1979).

    Article  ADS  Google Scholar 

  19. A. J. Sierk, Phys. Rev. C 33, 2039 (1986).

    Article  ADS  Google Scholar 

  20. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Atom. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  21. J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (New York) 105, 427 (1977).

    Article  ADS  Google Scholar 

  22. N. Takigawa, T. Rumin, and N. Ihara, Phys. Rev. C 61, 044607 (2000).

    Google Scholar 

  23. R. A. Broglia, C. H. Dasso, and A. Winter, in Proc. of Int. School of Physics “Enrico Fermi,” Varenna Course, 1979, Ed. by R. A. Broglia, R. A. Ricci, and H. A. Dasso (North-Holland, Amsterdam, 1981), p. 327.

    Google Scholar 

  24. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  25. V. I. Zagrebaev and V. V. Samarin, Yad. Fiz. 67, 1488 (2004) [Phys. At. Nucl. 67, 1488 (2004)].

    Google Scholar 

  26. I. I. Gontchar, M. Dasgupta, D. J. Hinde, et al., Phys. Rev. C 65, 034610 (2002).

    Google Scholar 

  27. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  28. G. Bertsch, J. Borysowicz, H. McManus, and W. G. Love, Nucl. Phys. A 284, 399 (1977).

    Article  ADS  Google Scholar 

  29. M. Lacombe, B. Loiseau, J. M. Richard, et al., Phys. Rev. C 21, 861 (1980).

    Article  ADS  Google Scholar 

  30. N. Anantaraman, H. Toki, and G. F. Bertsch, Nucl. Phys. A 398, 269 (1983).

    Article  ADS  Google Scholar 

  31. B. Sinha and S. A. Moszkowski, Phys. Lett. B 81, 289 (1979).

    Article  ADS  Google Scholar 

  32. A. K. Chaudhuri, D. N. Basu, and B. Sinha, Nucl. Phys. A 439, 415 (1985); A. K. Chaudhuri and B. Sinha, Nucl. Phys. A 455, 169 (1986).

    Article  ADS  Google Scholar 

  33. T. Khoa Dao, Nucl. Phys. A 484, 376 (1988); T. Khoa, A. Faessler, N. Ohtsuka, J. Phys. G 16, 1253 (1990).

    Article  ADS  Google Scholar 

  34. F. Petrovich, H. McManus, V. A. Madsen, and J. Atkinson, Phys. Rev. Lett. 22, 895 (1969); M. Golin, F. Petrovich, D. Robson, Phys. Lett. B 64, 253 (1976); F. Petrovich, Microscopic Optical Potentials (Springer, Berlin, 1979).

    Article  ADS  Google Scholar 

  35. W. G. Love and L. W. Owen, Nucl. Phys. A 239, 74 (1975); G. R. Satchler and W. G. Love, Phys. Lett. B 65, 415 (1976).

    Article  ADS  Google Scholar 

  36. A. M. Kobos, B. A. Brown, P. E. Hodgson, et al., Nucl. Phys. A 384, 65 (1982).

    Article  ADS  Google Scholar 

  37. Dao T. Khoa and W. von Oertzen, Phys. Lett. B 304, 8 (1993); Phys. Lett. B 342, 6 (1995).

    Article  ADS  Google Scholar 

  38. Dao T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56, 954 (1997).

    Article  ADS  Google Scholar 

  39. E. Uegaki and Y. Abe, Prog. Theor. Phys. 90, 615 (1993).

    Article  ADS  Google Scholar 

  40. G. G. Adamian, N. V. Antonenko, R. V. Jolos, et al., Int. Journ. Mod. Phys. E 5(1), 191 (1996).

    Article  ADS  Google Scholar 

  41. A. B. Migdal, The Theory of Finite Fermi-Systems and Properties of Atomic Nuclei, 2-nd ed. (Nauka, Moscow, 1983) [in Russian]; J. Speth, E. Werner, and W. Wild, Phys. Rep. 33, 127 (1977).

    Google Scholar 

  42. E. G. Nadjakov, K. P. Marinova, and Y. P. Gangrsky, Atom. Data Nucl. Data Tables 56, 133 (1994).

    Article  ADS  Google Scholar 

  43. I. Angeli, Acta Phys. Hung. A: Heavy Ion Physics 8, 23 (1998).

    Google Scholar 

  44. NRV nuclear map, http://nrv.jinr.ru/nrv

  45. P. J. Moffa, C. B. Dover, and J. P. Vary, Phys. Rev. C 16, 1857 (1977).

    Article  ADS  Google Scholar 

  46. F. Carstoiu and R. J. Lombard, Ann. Phys. (New York) 217, 279 (1992).

    Article  ADS  Google Scholar 

  47. S. Misicu and W. Greiner, Phys. Rev. C 66, 044606 (2002).

  48. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2, Nuclear Deformations (Benjamin, New York, 1974).

    Google Scholar 

  49. V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967); V. M. Strutinsky, Nucl. Phys. A 22, 1 (1968).

    Article  ADS  Google Scholar 

  50. M. Brack, J. Damgaard, A. S. Jensen, et al., Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  51. V. V. Pashkevich, Nucl. Phys. A 169, 275 (1971); S. Cwiok, V. V. Pashkevich, J. Dudek, and W. Nazarewicz, Nucl. Phys. A 41, 254 (1983); S. Cwiok, Z. Lojewski, and V. V. Pashkevich, Nucl. Phys. A 444, 1 (1985); V. V. Pashkevich, Nucl. Phys. A 477, 1 (1988).

    Article  ADS  Google Scholar 

  52. A. Baran, K. Pomorski, A. Lukasiak, and A. Sobiczewski, Nucl. Phys. A 361, 83 (1981); Z. Patyk, J. Skalski, A. Sobiczewski, and S. Cwiok, Nucl. Phys. A 502, 591c (1989); R. Smolanczuk, J. Skalski, and A. Sobiczewski, Phys. Rev. C 52, 1871 (1995).

    Article  ADS  Google Scholar 

  53. R. Smolanczuk, Phys. Rev. C 56, 812 (1997).

    Article  ADS  Google Scholar 

  54. P. Möller, J. R. Nix, and W. J. Swiatecki, Nucl. Phys. A 469, 1 (1987).

    Article  ADS  Google Scholar 

  55. P. Möller, J. R. Nix, and W. J. Swiatecki, Nucl. Phys. A 492, 349 (1989).

    Article  ADS  Google Scholar 

  56. P. Möller, A. J. Sierk, and A. Iwamoto, Phys. Rev. Lett. 92, 072501 (2004).

    Google Scholar 

  57. A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A 644, 389 (1998); Nucl. Phys. A 648, 282(E) (1999); A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A 679, 337 (2001).

    Article  ADS  Google Scholar 

  58. T. Bürvenich, M. Bender, J. A. Maruhn, and P.-G. Reinhard, Phys. Rev. C 69, 014307 (2004).

    Google Scholar 

  59. H. Goutte, J. B. Berger, P. Casoli, and D. Gogny, Phys. Rev. C 71, 024316 (2005).

    Google Scholar 

  60. S. G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk. 29(16), (1955); S. G. Nilsson, C. F. Tsang, A. Sobiczewski, et al., Nucl. Phys. A 131, 1 (1969).

  61. P. A. Cherdantsev and V. E. Marshalkin, Izv. AN SSSR, Ser. Fiz. 30, 341 (1966).

    Google Scholar 

  62. M. Demeur and G. Reidemeister, Ann. Phys. (Paris) 1, 181 (1966).

    Google Scholar 

  63. P. Holzer, U. Mosel, and W. Greiner, Nucl. Phys. A 138, 241 (1969).

    Article  ADS  Google Scholar 

  64. W. D. Myers, Droplet Model of Atomic Nuclei (IFI/Plenum, New York, 1977).

    Google Scholar 

  65. W. D. Myers and W. J. Swiatecki, Nucl. Phys. A 601, 141 (1996).

    Article  ADS  Google Scholar 

  66. A. Iwamoto, P. Möller, J. R. Nix, and H. Sagawa, Nucl. Phys. A 596, 329 (1996).

    Article  ADS  Google Scholar 

  67. K. Nishio, H. Ikezoe, S. Mitsuoka, and J. Lu, Phys. Rev. C 62, 014602 (2000); S. Mitsuoka, H. Ikezoe, K. Nishio, J. Lu, Phys. Rev. C 62, 054603 (2000).

    Google Scholar 

  68. S. Yamaji, H. Hofmann, and R. Samhammer, Nucl. Phys. A 475, 487 (1988).

    Article  ADS  Google Scholar 

  69. G. F. Bertsch, Z. Phys. A 289, 103 (1978); W. Cassing, W. Nörenberg, Nucl. Phys. A 401, 467 (1983).

    Article  Google Scholar 

  70. A. Diaz-Torres, Phys. Rev. C 69, 021603 (2004); A. Diaz-Torres and W. Scheid, Nucl. Phys. A 757, 373 (2005).

    Google Scholar 

  71. NRV codes for driving potentials; http://nrv.jinr.ru/nrv.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V. Zagrebaev, A. Karpov, Y. Aritomo, M. Naumenko, W. Greiner, 2007, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2007, Vol. 38, No. 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagrebaev, V., Karpov, A., Aritomo, Y. et al. Potential energy of a heavy nuclear system in fusion-fission processes. Phys. Part. Nuclei 38, 469–491 (2007). https://doi.org/10.1134/S106377960704003X

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377960704003X

PACS numbers

Navigation