Skip to main content
Log in

Fusion and quasi-fission dynamics in nearly-symmetric reactions

  • Article
  • Nuclear Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasifission process in 154Sm+160Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than 10-5 for this reaction, and the nuclear contact time is generally smaller than 1500 fm/c. From the central collisions of Sm+Gd, the neutron-rich fragments such as 164,165Gd, 192W can be produced in the ImQMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dasgupta M, Hinde D J, Diaz-Torres A, et al. Beyond the coherent coupled channels description of nuclear fusion. Phys Rev Lett, 2007, 99: 192701

    Article  ADS  Google Scholar 

  2. Leigh J R, Dasgupta M, Hinde D J, et al. Barrier distributions from the fusion of oxygen ions with 144,148,154Sm and 186W. Phys Rev C, 1995; 52: 3151–3166

    Article  ADS  Google Scholar 

  3. Timmers H, Ackermann D, Beghini S, et al. A case study of collectivity, transfer and fusion enhancement. Nucl Phys A, 1998, 633: 421445

    Article  Google Scholar 

  4. Zhang H Q, Lin C J, Yang F, et al. Near-barrier fusion of 32S+90,96Zr: The effect of multi-neutron transfers in sub-barrier fusion reactions. Phys Rev C, 2010, 82: 054609

    Article  ADS  Google Scholar 

  5. Hofmann S, Munzenberg G. The discovery of the heaviest elements. Rev Mod Phys, 2000; 72: 733–767

    Article  ADS  Google Scholar 

  6. Oganessian Y Ts, Abdullin F Sh, Bailey D E, et al. Synthesis of a new element with atomic number Z=117. Phys Rev Lett, 2010, 104: 142502

    Article  ADS  Google Scholar 

  7. Sobiczewski A, Pomorski K. Description of structure and properties of superheavy nuclei. Prog Part Nucl Phys, 2007; 58: 292–349

    Article  ADS  Google Scholar 

  8. Gupta R K, Manhas M, Munzenberg G, et al. heory of the compactness of the hot fusion reaction 48Ca+244Pu292114. Phys Rev C, 2005, 72: 014607

    Article  ADS  Google Scholar 

  9. Wong C Y. Interaction barrier in charged-particle nuclear reactions. Phys Rev Lett, 1973; 31: 766–769

    Article  ADS  Google Scholar 

  10. Hagino K, Rowley N, Kruppa A T. A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput Phys Commun, 1999; 123: 143–152

    Article  ADS  MATH  Google Scholar 

  11. Liu M, Wang N, Li Z X, et al. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers. Nucl Phys A, 2006; 768: 80–98

    Article  ADS  Google Scholar 

  12. Wang N, Liu M, Yang Y X. Heavy-ion fusion and scattering with Skyrme energy density functional. Sci China Ser G-Phys Mech Astron, 2009; 52: 1554–1573

    Article  ADS  Google Scholar 

  13. Wang B, Wen K, Zhao W J, et al. Systematics of capture and fusion dynamics in heavy-ion collisions. arXiv:1504.00756

  14. Umar A S, Oberacker V E. Heavy-ion interaction potential deduced from density-constrained time-dependent Hartree-Fock calculation. Phys Rev C, 2006, 74: 021601(R)

    Article  ADS  Google Scholar 

  15. Umar A S, Oberacker V E, Maruhn J A, et al. Microscopic composition of ion-ion interaction potentials. Phys Rev C, 2012, 85: 017602

    Article  ADS  Google Scholar 

  16. Guo L, Maruhn J A, Reinhard P G. Boost-invariant mean field approximation and the nuclear Landau-Zener effect. Phys Rev C, 2007, 76: 014601

    Article  ADS  Google Scholar 

  17. Dai G F, Guo L, Zhao E G, et al. Effect of tensor force on dissipation dynamics in time-dependent Hartree-Fock theory. Sci China-Phys Mech Astron, 2014; 57: 1618–1622

    Article  ADS  Google Scholar 

  18. Wang N, Li Z X, Wu X Z. Improved quantum molecular dynamics model and its applications to fusion reaction near barrier. Phys Rev C, 2002, 65: 064608

    Article  ADS  Google Scholar 

  19. Wang N, Li Z, Wu X Z, et al. Further development of the improved quantum molecular dynamics model and its application to fusion reactions near the barrier. Phys Rev C, 2004, 69: 034608

    Article  ADS  Google Scholar 

  20. Jiang Y Y, Wang N, Li Z X, et al. Dynamical nucleus-nucleus potential at short distances. Phys Rev C, 2010, 81: 044602

    Article  ADS  Google Scholar 

  21. Zanganeh V, Wang N, Ghodsi O N. Dynamical nucleus-nucleus potential and incompressibility of nuclear matter. Phys Rev C, 2012, 85: 034601

    Article  ADS  Google Scholar 

  22. Wang N, Ou L, Zhang Y X, et al. Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei. Phys Rev C, 2014, 89: 064601

    Article  ADS  Google Scholar 

  23. Wang N, Zhao K, Li Z X. Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model. Phys Rev C, 2014, 90: 054610

    Article  ADS  Google Scholar 

  24. Swiatecki W J. The dynamics of nuclear coalescence or reseparation. Phys Scr, 1981; 24: 113–122

    Article  ADS  Google Scholar 

  25. Kozulin E M, Knyazheva G N, Itkis I M, et al. Fusion-fission and quasifission of superheavy systems with Z=110116 formed in 48Cainduced reactions. Phys Rev C, 2014, 90: 054608

    Article  ADS  Google Scholar 

  26. Oberacker V E, Umar A S, Simenel C. Dissipative dynamics in quasifission. Phys Rev C, 2014, 90: 054605

    Article  ADS  Google Scholar 

  27. Zhang H Q, Zhang C L, Lin C J, et al. Competition between fusionfission and quasifission processes in the 32S+184W reaction. Phys Rev C, 2010, 81: 034611

    Article  ADS  Google Scholar 

  28. Shen W Q, Albinski J, Gobbi A, et al. Fission and quasifission in Uinduced reactions. Phys Rev C, 1987; 36: 115–142

    Article  ADS  Google Scholar 

  29. Shen J J, Shen C W. Theoretical analysis of mass distribution of quasifission for 238U-induced reactions. Sci China-Phys Mech Astron, 2014; 57: 453–457

    Article  ADS  Google Scholar 

  30. Adamian G G, Antonenko N V, Scheid W. Model of competition between fusion and quasifission in reactions with heavy nuclei. Nucl Phys A, 1997; 618: 176–198

    Article  ADS  Google Scholar 

  31. Diaz-Torres A, Adamian G G, Antonenko N V, et al. Quasifission process in a transport model for a dinuclear system. Phys Rev C, 2001, 64: 024604

    Article  ADS  Google Scholar 

  32. Wang N, Zhao E G, Scheid W, et al. Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with trans-uranium targets. Phys Rev C, 2012, 85: 041601(R)

    Article  ADS  Google Scholar 

  33. Shen C, Kosenko G, Abe Y. Two-step model of fusion for the synthesis of superheavy elements. Phys Rev C, 2002, 66: 061602(R)

    Article  ADS  Google Scholar 

  34. Zagrebaev V, Greiner W. Unified consideration of deep inelastic, quasifission and fusion-fission phenomena. J Phys G, 2005; 31: 825–844

    Article  ADS  Google Scholar 

  35. Nasirov A K, Mandaglio G, Giardina G, et al. Effects of the entrance channel and fission barrier in the synthesis of superheavy element Z=120. Phys Rev C, 2011, 84: 044612

    Article  ADS  Google Scholar 

  36. Bao X J, Gao Y, Li JQ, et al. Influence of nuclear basic data on the calculation of production cross sections of superheavy nuclei. Phys Rev C, 2015, 92: 014601

    Article  ADS  Google Scholar 

  37. Choudhury R K, Gupta Y K. Revisiting the symmetric reactions for synthesis of super-heavy nuclei of Z 120. Phys Lett B, 2014; 731: 168–172

    Article  ADS  Google Scholar 

  38. Cap T, Siwek-Wilczyńska K, Wilczński J. No chance for synthesis of super-heavy nuclei in fusion of symmetric systems. Phys Lett B, 2014; 736: 478–481

    Article  ADS  Google Scholar 

  39. Audi G, Wang M, Wapstra A H, et al. The AME2012 atomic mass evaluation. Chin Phys C, 2012; 36: 1287–1602

    Article  Google Scholar 

  40. Fan X H, Dong J M, Zuo W. Symmetry energy at subsaturation densities and the neutron skin thickness of 208Pb. Sci China-Phys Mech Astron, 2015, 58(6): 062002

    Article  Google Scholar 

  41. Papa M, Maruyama T, Bonasera A. Constrained molecular dynamics approach to fermionic systems. Phys Rev C, 2001, 64: 024612

    Article  ADS  Google Scholar 

  42. Kolata J J, Roberts A, Howard A M, et al. Fusion of 124,132Sn with 40,48Ca. Phys Rev C, 2012, 85: 054603

    Article  ADS  Google Scholar 

  43. Jiang C L, Back B B, Esbensen H, et al. Fusion hindrance for a positive Q-value system. Phys Rev C, 2008, 78: 017601

    Article  ADS  Google Scholar 

  44. Gary S, Volant C. Fusion and compound nuclei decay for light and intermediate-mass systems: 24Mg, 28Si+12C, 24Mg+24,26Mg, 28Si+24Mg, 28,29,30Si. Phys Rev C, 1982; 25: 1877–1895

    Article  ADS  Google Scholar 

  45. Montagnoli G, Stefanini A M, Esbensen H, et al. Effects of transfer channels on near- and sub-barrier fusion of 32S + 48Ca. Phys Rev C, 2013, 87: 014611

    Article  ADS  Google Scholar 

  46. Trotta M, Stefanini A M, Corradi L, et al. Sub-barrier fusion of the magic nuclei 40,48Ca+48Ca. Phys Rev C, 2001, 65: 011601(R)

    Article  ADS  Google Scholar 

  47. Jiang C L, Stefanini A M, Esbensen H, et al. Fusion hindrance for Ca+Ca systems: Influence of neutron excess. Phys Rev C, 2010, 82: 041601

    Article  ADS  Google Scholar 

  48. Reisdorf W, Hessberger F P, Hildenbrand K D, et al. Fusability and fissionability in 86Kr-induced reactions near and below the fusion barrier. Nucl Phys A, 1985, 444: 154

    Article  ADS  Google Scholar 

  49. Reisdorf W. Analysis of fissionability data at high excitation energies. Z Phys A, 1981; 300: 227–238

    Article  ADS  Google Scholar 

  50. Wang N, Zhao K, Scheid W, et al. Fusion-fission reactions with a modified Woods-Saxon potential. Phys Rev C, 2008, 77: 014603

    Article  ADS  Google Scholar 

  51. Wang N, Tian J L, Scheid W. Systematics of fusion probability in hot fusion reactions. Phys Rev C, 2011, 84: 061601(R)

    Article  ADS  Google Scholar 

  52. Angeli I, Marinova K P. Table of experimental nuclear ground state charge radii: An update. At Data and Nucl Data Tables, 2013; 99: 69–95

    Article  ADS  Google Scholar 

  53. Bass R. Nucleus-nucleus potential deduced from experimental fusion cross sections. Phys Rev Lett, 1977; 39: 265–268

    Article  ADS  Google Scholar 

  54. Wang N, Liu M, Wu X Z, et al. Surface diffuseness correction in global mass formula. Phys Lett B, 2014; 734: 215–219

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zhao, K. & Li, Z. Fusion and quasi-fission dynamics in nearly-symmetric reactions. Sci. China Phys. Mech. Astron. 58, 112001 (2015). https://doi.org/10.1007/s11433-015-5726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5726-z

Keywords

Navigation